Skip to main content
Log in

NMR relaxation parameters of methyl groups as a tool to map the interfaces of helix–helix interactions in membrane proteins

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

In the case of soluble proteins, chemical shift mapping is used to identify the intermolecular interfaces when the NOE-based calculations of spatial structure of the molecular assembly are impossible or impracticable. However, the reliability of the membrane protein interface mapping based on chemical shifts or other relevant parameters was never assessed. In the present work, we investigate the predictive power of various NMR parameters that can be used for mapping of helix–helix interfaces in dimeric TM domains. These parameters are studied on a dataset containing three structures of helical dimers obtained for two different proteins in various membrane mimetics. We conclude that the amide chemical shifts have very little predictive value, while the methyl chemical shifts could be used to predict interfaces, though with great care. We suggest an approach based on conversion of the carbon NMR relaxation parameters of methyl groups into parameters of motion, and one of such values, the characteristic time of methyl rotation, appears to be a reliable sensor of interhelix contacts in transmembrane domains. The carbon NMR relaxation parameters of methyl groups can be measured accurately and with high sensitivity and resolution, making the proposed parameter a useful tool for investigation of protein-protein interfaces even in large membrane proteins. An approach to build the models of transmembrane dimers based on perturbations of methyl parameters and TMDOCK software is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguirre C, ten Brink T, Cala O et al (2014) Protein–ligand structure guided by backbone and side-chain proton chemical shift perturbations. J Biomol NMR 60:147–156. doi:10.1007/s10858-014-9864-9

    Article  Google Scholar 

  • Bargmann CI, Hung MC, Weinberg RA (1986) Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 45:649–657

    Article  Google Scholar 

  • Barrett PJ, Song Y, Van Horn WD et al (2012) The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 336:1168–1171. doi:10.1126/science.1219988

    Article  ADS  Google Scholar 

  • Bennasroune A, Fickova M, Gardin A et al (2004) Transmembrane peptides as inhibitors of ErbB receptor signaling. Mol Biol Cell 15:3464–3474. doi:10.1091/mbc.E03-10-0753

    Article  Google Scholar 

  • Bennasroune A, Gardin A, Auzan C et al (2005) Inhibition by transmembrane peptides of chimeric insulin receptors. Cell Mol Life Sci 62:2124–2131. doi:10.1007/s00018-005-5226-9

    Article  Google Scholar 

  • Bocharov EV, Pustovalova YE, Pavlov KV et al (2007) Unique dimeric structure of BNip3 transmembrane domain suggests membrane permeabilization as a cell death trigger. J Biol Chem 282:16256–16266. doi:10.1074/jbc.M701745200

    Article  Google Scholar 

  • Bocharov EV, Mineev KS, Volynsky PE et al (2008) Spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 presumably corresponding to the receptor active state. J Biol Chem 283:6950–6956. doi:10.1074/jbc.M709202200

    Article  Google Scholar 

  • Bocharov EV, Mineev KS, Goncharuk MV, Arseniev AS (2012) Structural and thermodynamic insight into the process of “weak” dimerization of the ErbB4 transmembrane domain by solution NMR. Biochim Biophys Acta 1818:2158–2170. doi:10.1016/j.bbamem.2012.05.001

    Article  Google Scholar 

  • Bocharov EV, Lesovoy DM, Goncharuk SA et al (2013) Structure of FGFR3 transmembrane domain dimer: implications for signaling and human pathologies. Structure 21:2087–2093. doi:10.1016/j.str.2013.08.026

    Article  Google Scholar 

  • Bocharov EV, Lesovoy DM, Pavlov KV et al (2016) Alternative packing of EGFR transmembrane domain suggests that protein–lipid interactions underlie signal conduction across membrane. Biochim Biophys Acta 1858:1254–1261. doi:10.1016/j.bbamem.2016.02.023

    Article  Google Scholar 

  • Bocharov EV, Mineev KS, Pavlov KV et al (2017) Helix-helix interactions in membrane domains of bitopic proteins: specificity and role of lipid environment. Biochim Biophys Acta 1859:561–576. doi:10.1016/j.bbamem.2016.10.024

    Article  Google Scholar 

  • Bragin PE, Mineev KS, Bocharova OV et al (2016) HER2 transmembrane domain dimerization coupled with self-association of membrane-embedded cytoplasmic juxtamembrane regions. J Mol Biol 428:52–61. doi:10.1016/j.jmb.2015.11.007

    Article  Google Scholar 

  • Carlomagno T, Griesinger C (2000) Errors in the measurement of cross-correlated relaxation rates and how to avoid them. J Magn Reson 144:280–287. doi:10.1006/jmre.2000.2056

    Article  ADS  Google Scholar 

  • Chen P-H, Unger V, He X (2015) Structure of full-length human PDGFRβ bound to its activating ligand PDGF-B as determined by negative-stain electron microscopy. J Mol Biol 427:3921–3934. doi:10.1016/j.jmb.2015.10.003

    Article  Google Scholar 

  • Chill JH, Louis JM, Baber JL, Bax A (2006) Measurement of 15N relaxation in the detergent-solubilized tetrameric KcsA potassium channel. J Biomol NMR 36:123–136. doi:10.1007/s10858-006-9071-4

    Article  Google Scholar 

  • Deatherage CL, Lu Z, Kroncke BM et al (2017) Structural and biochemical differences between the Notch and the amyloid precursor protein transmembrane domains. Sci Adv 3:e1602794. doi:10.1126/sciadv.1602794

    Article  ADS  Google Scholar 

  • Del Piccolo N, Placone J, Hristova K (2015) Effect of thanatophoric dysplasia type I mutations on FGFR3 dimerization. Biophys J 108:272–278. doi:10.1016/j.bpj.2014.11.3460

    Article  Google Scholar 

  • Dosch DD, Ballmer-Hofer K (2010) Transmembrane domain-mediated orientation of receptor monomers in active VEGFR-2 dimers. FASEB J 24:32–38. doi:10.1096/fj.09-132670

    Article  Google Scholar 

  • Endres NF, Das R, Smith AW et al (2013) Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell 152:543–556. doi:10.1016/j.cell.2012.12.032

    Article  Google Scholar 

  • Favier A, Brutscher B (2011) Recovering lost magnetization: polarization enhancement in biomolecular NMR. J Biomol NMR 49:9–15. doi:10.1007/s10858-010-9461-5

    Article  Google Scholar 

  • Goncharuk MV, Schulga AA, Ermolyuk YS et al (2011) Bacterial synthesis, purification, and solubilization of transmembrane segments of ErbB family receptors. Mol Biol 45:823. doi:10.1134/S0026893311040066

    Article  Google Scholar 

  • Grzesiek S, Vuister GW, Bax A (1993) A simple and sensitive experiment for measurement of JCC couplings between backbone carbonyl and methyl carbons in isotopically enriched proteins. J Biomol NMR 3:487–493

    Google Scholar 

  • Herrmann T, Güntert P, Wüthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227. doi:10.1016/S0022-2836(02)00241-3

    Article  Google Scholar 

  • Hiller S, Garces RG, Malia TJ et al (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321:1206–1210. doi:10.1126/science.1161302

    Article  ADS  Google Scholar 

  • Jin C, Prompers JJ, Brüschweiler R (2003) Cross-correlation suppressed T1 and NOE experiments for protein side-chain 13CH2 groups. J Biomol NMR 26:241–247

    Article  Google Scholar 

  • Kazimierczuk K, Orekhov VY (2012) A comparison of convex and non-convex compressed sensing applied to multidimensional NMR. J Magn Reson 223:1–10. doi:10.1016/j.jmr.2012.08.001

    Article  ADS  Google Scholar 

  • Kerfah R, Plevin MJ, Sounier R et al (2015) Methyl-specific isotopic labeling: a molecular tool box for solution NMR studies of large proteins. Curr Opin Struct Biol 32:113–122. doi:10.1016/j.sbi.2015.03.009

    Article  Google Scholar 

  • Kumar A (2000) Cross-correlations in NMR. Prog Nucl Magn Reson Spectrosc 37:191–319. doi:10.1016/S0079-6565(00)00023-6

    Article  ADS  Google Scholar 

  • Liao X, Long D, Li D-W et al (2012) Probing side-chain dynamics in proteins by the measurement of nine deuterium relaxation rates per methyl group. J Phys Chem B 116:606–620. doi:10.1021/jp209304c

    Article  Google Scholar 

  • Lomize AL, Pogozheva ID (2017) TMDOCK: an energy-based method for modeling α-helical dimers in membranes. J Mol Biol 429:390–398. doi:10.1016/j.jmb.2016.09.005

    Article  Google Scholar 

  • Long D, Li D-W, Walter KFA et al (2011) Toward a predictive understanding of slow methyl group dynamics in proteins. Biophys J 101:910–915. doi:10.1016/j.bpj.2011.06.053

    Article  Google Scholar 

  • MacKenzie KR, Prestegard JH, Engelman DM (1996) Leucine side-chain rotamers in a glycophorin A transmembrane peptide as revealed by three-bond carbon-carbon couplings and 13C chemical shifts. J Biomol NMR 7:256–260

    Article  Google Scholar 

  • Manni S, Mineev KS, Usmanova D et al (2014) Structural and functional characterization of alternative transmembrane domain conformations in VEGF receptor 2 activation. Structure 22:1077–1089. doi:10.1016/j.str.2014.05.010

    Article  Google Scholar 

  • Mineev KS, Khabibullina NF, Lyukmanova EN et al (2011) Spatial structure and dimer–monomer equilibrium of the ErbB3 transmembrane domain in DPC micelles. Biochim Biophys Acta 1808:2081–2088. doi:10.1016/j.bbamem.2011.04.017

    Article  Google Scholar 

  • Mineev KS, Goncharuk SA, Arseniev AS (2014a) Toll-like receptor 3 transmembrane domain is able to perform various homotypic interactions: an NMR structural study. FEBS Lett 588:3802–3807. doi:10.1016/j.febslet.2014.08.031

    Article  Google Scholar 

  • Mineev KS, Lesovoy DM, Usmanova DR et al (2014b) NMR-based approach to measure the free energy of transmembrane helix–helix interactions. Biochim Biophys Acta 1838:164–172. doi:10.1016/j.bbamem.2013.08.021

    Article  Google Scholar 

  • Mineev KS, Panova SV, Bocharova OV et al (2015) The membrane mimetic affects the spatial structure and mobility of EGFR transmembrane and juxtamembrane domains. BioChemistry 54:6295–6298. doi:10.1021/acs.biochem.5b00851

    Article  Google Scholar 

  • Mineev KS, Goncharuk SA, Goncharuk MV et al (2017) Spatial structure of TLR4 transmembrane domain in bicelles provides the insight into the receptor activation mechanism. Sci Rep 7:6864. doi:10.1038/s41598-017-07250-4

    Article  ADS  Google Scholar 

  • Polyansky AA, Chugunov AO, Volynsky PE et al (2014) PREDDIMER: a web server for prediction of transmembrane helical dimers. Bioinformatics 30:889–890. doi:10.1093/bioinformatics/btt645

    Article  Google Scholar 

  • Rosen MK, Gardner KH, Willis RC et al (1996) Selective methyl group protonation of perdeuterated proteins. J Mol Biol 263:627–636. doi:10.1006/jmbi.1996.0603

    Article  Google Scholar 

  • Schlessinger J (2002) Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110:669–672

    Article  Google Scholar 

  • Schumann FH, Riepl H, Maurer T et al (2007) Combined chemical shift changes and amino acid specific chemical shift mapping of protein–protein interactions. J Biomol NMR 39:275–289. doi:10.1007/s10858-007-9197-z

    Article  Google Scholar 

  • Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) Cross-correlated relaxation enhanced 1H–13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125:10420–10428. doi:10.1021/ja030153x

    Article  Google Scholar 

  • Uhrín D, Uhrínová S, Leadbeater C et al (2000) 3D HCCH3-TOCSY for resonance assignment of methyl-containing side chains in 13C-labeled proteins. J Magn Reson 142:288–293. doi:10.1006/jmre.1999.1951

    Article  ADS  Google Scholar 

  • Vuister GW, Wang AC, Bax A (1993) Measurement of three-bond nitrogen-carbon J couplings in proteins uniformly enriched in nitrogen-15 and carbon-13. J Am Chem Soc 115:5334–5335

    Article  Google Scholar 

  • Walters RFS, DeGrado WF (2006) Helix-packing motifs in membrane proteins. Proc Natl Acad Sci 103:13658–13663. doi:10.1073/pnas.0605878103

    Article  ADS  Google Scholar 

  • Wang Y, Barth P (2015) Evolutionary-guided de novo structure prediction of self-associated transmembrane helical proteins with near-atomic accuracy. Nat Commun 6:7196. doi:10.1038/ncomms8196

    Article  ADS  Google Scholar 

  • Williamson MP (2013) Using chemical shift perturbation to characterise ligand binding. Prog Nucl Magn Reson Spectrosc 73:1–16. doi:10.1016/j.pnmrs.2013.02.001

    Article  Google Scholar 

  • Wishart DS, Sykes BD, Richards FM (1991) Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol 222:311–333

    Article  Google Scholar 

  • Xue Y, Pavlova MS, Ryabov YE et al (2007) Methyl rotation barriers in proteins from 2H relaxation data. Implications for protein structure. J Am Chem Soc 129:6827–6838. doi:10.1021/ja0702061

    Article  Google Scholar 

  • Yang D (2011) Probing protein side chain dynamics via 13C NMR relaxation. Protein Pept Lett 18:380–395. doi:10.2174/092986611794653932

    Article  Google Scholar 

  • Zhang X, Sui X, Yang D (2006) Probing methyl dynamics from 13C autocorrelated and cross-correlated relaxation. J Am Chem Soc 128:5073–5081. doi:10.1021/ja057579r

    Article  Google Scholar 

  • Zhang S-Q, Kulp DW, Schramm CA et al (2015) The membrane- and soluble-protein helix-helix interactome: similar geometry via different interactions. Structure 23:527–541. doi:10.1016/j.str.2015.01.009

    Article  Google Scholar 

  • Zwahlen C, Legault P, Vincent SJF et al (1997) Methods for measurement of intermolecular NOEs by multinuclear NMR spectroscopy: application to a bacteriophage λ N-peptide/boxB RNA complex. J Am Chem Soc 119:6711–6721. doi:10.1021/ja970224q

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation Grant #14-14-00573. Experiments were partially carried out using the equipment provided by the IBCH сore facility (CKP IBCH, supported by Russian Ministry of Education and Science, Grant RFMEFI62117X0018).

Accession numbers

NMR spatial structure and chemical shifts of HER2TM in DPC micelles was deposited to PDB and BMRB under the accession codes 5OB4 and 34154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Bocharov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 258 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lesovoy, D.M., Mineev, K.S., Bragin, P.E. et al. NMR relaxation parameters of methyl groups as a tool to map the interfaces of helix–helix interactions in membrane proteins. J Biomol NMR 69, 165–179 (2017). https://doi.org/10.1007/s10858-017-0146-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-017-0146-1

Keywords

Navigation