Skip to main content
Log in

Protein–ligand structure guided by backbone and side-chain proton chemical shift perturbations

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The fragment-based drug design approach consists of screening libraries of fragment-like ligands, to identify hits that typically bind the protein target with weak affinity (\(100\,\upmu \hbox {M}\)–5 mM). The determination of the protein–fragment complex 3D structure constitutes a crucial step for uncovering the key interactions responsible for the protein–ligand recognition, and for growing the initial fragment into potent active compounds. The vast majority of fragments are aromatic compounds that induce chemical shift perturbations (CSP) on protein NMR spectra. These experimental CSPs can be quantitatively used to guide the ligand docking, through the comparison between experimental CSPs and CSP back-calculation based on the ring current effect. Here we implemented the CSP back-calculation into the scoring function of the program PLANTS. We compare the results obtained with CSPs measured either on amide or aliphatic protons of the human peroxiredoxin 5. We show that the different kinds of protons lead to different results for resolving the 3D structures of protein–fragment complexes, with the best results obtained with the \(\hbox {H}_{\alpha }\) protons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguirre C, ten Brink T, Walker O, Guillière F, Davesne D, Krimm I (2013) BcL-xL conformational changes upon fragment binding revealed by NMR. PLoS One 8(5):e64,400

    Article  Google Scholar 

  • Aguirre C, ten Brink T, Guichou JF, Cala O, Krimm I (2014) Comparing binding modes of analogous fragments using NMR in fragment-based drug design: application to PRDX5. PLoS One 9(7):e102,300

    Article  Google Scholar 

  • Barelier S, Linard D, Pons J, Clippe A, Knoops B, Lancelin JM, Krimm I (2010) Discovery of fragment molecules that bind the human peroxiredoxin 5 active site. PLoS One 5(3):e9744

    Article  ADS  Google Scholar 

  • Bissantz C, Kuhn B, Stahl M (2010) A medicinal chemists guide to molecular interactions. J Med Chem 53(14):5061–5084

    Article  Google Scholar 

  • Caliandro R, Belviso DB, Aresta BM, de Candia M, Altomare CD (2013) Protein crystallography and fragment-based drug design. Future Med Chem 5(10):1121–1140

    Article  Google Scholar 

  • Cioffi M, Hunter CA, Packer MJ, Spitaleri A (2008) Determination of protein–ligand binding modes using complexation-induced changes in (1)H NMR chemical shift. J Med Chem 51(8):2512–2517

    Article  Google Scholar 

  • Cioffi M, Hunter CA, Packer MJ, Pandya MJ, Williamson MP (2009) Use of quantitative (1)H NMR chemical shift changes for ligand docking into barnase. J Biomol NMR 43(1):11–19

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293

    Google Scholar 

  • Dominguez C, Boelens R, Bonvin AMJJ (2003) HADDOCK: a protein–protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125(7):1731–1737

    Article  Google Scholar 

  • Gans P, Hamelin O, Sounier R, Ayala I, Durá MA, Amero CD, Noirclerc-Savoye M, Franzetti B, Plevin MJ, Boisbouvier J (2010) Stereospecific isotopic labeling of methyl groups for NMR spectroscopic studies of high-molecular-weight proteins. Angew Chem Int Ed Engl 49(11):1958–1962

    Article  Google Scholar 

  • Goddard TD, Kneller DG (2004) Sparky 3. University of California, San Fransisco, CA

    Google Scholar 

  • González-Ruiz D, Gohlke H (2009) Steering protein–ligand docking with quantitative NMR chemical shift perturbations. J Chem Inf Model 49(10):2260–2271

    Article  Google Scholar 

  • Gorczynski MJ, Grembecka J, Zhou Y, Kong Y, Roudaia L, Douvas MG, Newman M, Bielnicka I, Baber G, Corpora T, Shi J, Sridharan M, Lilien R, Donald BR, Speck NA, Brown ML, Bushweller JH (2007) Allosteric inhibition of the protein–protein interaction between the leukemia-associated proteins Runx1 and CBF\(\beta \). Chem Biol 14(10):1186–1197

    Article  Google Scholar 

  • Harner MJ, Frank AO, Fesik SW (2013) Fragment-based drug discovery using NMR spectroscopy. J Biomol NMR 56(2):65–75

    Article  Google Scholar 

  • Hunter CA, Packer MJ (1999) Complexation-induced changes in \(^1\)H NMR chemical shift for supramolecular structure determination. Chem Eur J 5(6):1891–1897

    Article  Google Scholar 

  • Johnson BA, Blevins RA (1994) NMR view: a computer program for the visualization and analysis of NMR data. J Biomol NMR 4(5):603–614

    Article  Google Scholar 

  • Korb O, Stützle T, Exner TE (2007) An ant colony optimization approach to flexible protein–ligand docking. Swarm Intell 2(1):115–134

    Article  Google Scholar 

  • Korb O, Stützle T, Exner TE (2009) Empirical scoring functions for advanced protein–ligand docking with PLANTS. J Chem Inf Model 49(1):84–96

    Article  Google Scholar 

  • Korb O, Möller HM, Exner TE (2010) NMR-guided molecular docking of a protein–peptide complex based on ant colony optimization. ChemMedChem 5(7):1001–1006

    Article  Google Scholar 

  • Kuo LC (2011) Fragment-based drug design: tools, practical approaches, and exemples. Academic Press, San Diego 591 p

    Google Scholar 

  • Laskowski RA, Swindells MB (2011) Ligplot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model 51(10):2778–2786

    Article  Google Scholar 

  • McCoy MA, Wyss DF (2000) Alignment of weakly interacting molecules to protein surfaces using simulations of chemical shift perturbations. J Biomol NMR 18(3):189–198

    Article  Google Scholar 

  • Medek A, Hajduk PJ, Mack J, Fesik SW (2000) The use of differential chemical shifts for determining the binding site location and orientation of protein-bound ligands. J Am Chem Soc 122(6):1241–1242

    Article  Google Scholar 

  • Moon S, Case DA (2007) A new model for chemical shifts of amide hydrogens in proteins. J Biomol NMR 38(2):139–150

    Article  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  Google Scholar 

  • Neal S, Nip AM, Zhang H, Wishart DS (2003) Rapid and accurate calculation of protein \(^1\)H, \(^{13}\)C and \(^{15}\)N chemical shifts. J Biomol NMR 26(3):215–240

    Article  Google Scholar 

  • Neri D, Szyperski T, Otting G, Senn H, Wüthrich K (1989) Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28(19):7510–7516

    Article  Google Scholar 

  • Nielsen JT, Eghbalnia HR, Nielsen NC (2012) Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field. Prog Nucl Magn Reson Spectrosc 60:1–28

    Article  Google Scholar 

  • Ösapay K, Case DA (1991) A new analysis of proton chemical shifts in proteins. J Am Chem Soc 113(25):9436–9444

    Article  Google Scholar 

  • Parker LL, Houk AR, Jensen JH (2006) Cooperative hydrogen bonding effects are key determinants of backbone amide proton chemical shifts in proteins. J Am Chem Soc 128(30):9863–9872

    Article  Google Scholar 

  • Permi P, Tossavainen H, Hellman M (2004) Efficient assignment of methyl resonances: enhanced sensitivity by gradient selection in a DE-MQ-(H)CC(m)H(m)-TOCSY experiment. J Biomol NMR 30(3):275–282

    Article  Google Scholar 

  • Plevin MJ, Hamelin O, Boisbouvier J, Gans P (2011) A simple biosynthetic method for stereospecific resonance assignment of prochiral methyl groups in proteins. J Biomol NMR 49(2):61–67

    Article  Google Scholar 

  • Pople J (1958) Molecular orbital theory of aromatic ring currents. Mol Phys 1(2):175–180

    Article  ADS  Google Scholar 

  • Pople JA (1956) Proton magnetic resonance of hydrocarbons. J Chem Phys 24(5):1111–1111

    Article  MathSciNet  ADS  Google Scholar 

  • Riedinger C, Endicott JA, Kemp SJ, Smyth LA, Watson A, Valeur E, Golding BT, Griffin RJ, Hardcastle IR, Noble ME, McDonnell JM (2008) Analysis of chemical shift changes reveals the binding modes of isoindolinone inhibitors of the MDM2-p53 interaction. J Am Chem Soc 130(47):16,038–16,044

    Article  Google Scholar 

  • Schieborr U, Vogtherr M, Elshorst B, Betz M, Grimme S, Pescatore B, Langer T, Saxena K, Schwalbe H (2005) How much NMR data is required to determine a protein–ligand complex structure? ChemBioChem 6(10):1891–1898

    Article  Google Scholar 

  • Shah DM, AB E, Diercks T, Hass MAS, van Nuland NAJ, Siegal G (2012) Rapid protein–ligand costructures from sparse NOE data. J Med Chem 55(23):10,786–10,790

    Article  Google Scholar 

  • Shen Y, Bax A (2007) Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology. J Biomol NMR 38(4):289–302

    Article  Google Scholar 

  • Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292):1531–1534

    Article  ADS  Google Scholar 

  • Stark J, Powers R (2008) Rapid protein–ligand costructures using chemical shift perturbations. J Am Chem Soc 130(2):535–545

    Article  Google Scholar 

  • Williamson MP (2013) Using chemical shift perturbation to characterise ligand binding. Prog Nucl Magn Reson Spectrosc 73:1–16

    Article  Google Scholar 

  • Wishart DS (2011) Interpreting protein chemical shift data. Prog Nucl Magn Reson Spectrosc 58:62–87

    Article  Google Scholar 

  • Wishart DS, Case DA (2001) Use of chemical shifts in macromolecular structure determination. Methods Enzymol 338:3–34

    Article  Google Scholar 

  • Würtz P, Hellman M, Tossavainen H, Permi P (2006) Towards unambiguous assignment of methyl-containing residues by double and triple sensitivity-enhanced HCCmHm-TOCSY experiments. J Biomol NMR 36(1):13–26

    Article  Google Scholar 

  • Wyss DF, Arasappan A, Senior MM, Wang YS, Beyer BM, Njoroge FG, McCoy MA (2004) Non-peptidic small-molecule inhibitors of the single-chain hepatitis C virus NS3 protease/NS4A cofactor complex discovered by structure-based NMR screening. J Med Chem 47(10):2486–2498

    Article  Google Scholar 

  • Yang D, Zheng Y, Liu D, Wyss DF (2004) Sequence-specific assignments of methyl groups in high-molecular weight proteins. J Am Chem Soc 126(12):3710–3711

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the TGIR-RMN-THC Fr3050 CNRS for conducting the research is gratefully acknowledged. The authors want to thank the ANR (Agence Nationale de la Recherche), ANR-11-JS07-0008, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Krimm.

Additional information

Clémentine Aguirre and Tim ten Brink contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguirre, C., ten Brink, T., Cala, O. et al. Protein–ligand structure guided by backbone and side-chain proton chemical shift perturbations. J Biomol NMR 60, 147–156 (2014). https://doi.org/10.1007/s10858-014-9864-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-014-9864-9

Keywords

Navigation