Skip to main content
Log in

Bacterial production of site specific 13C labeled phenylalanine and methodology for high level incorporation into bacterially expressed recombinant proteins

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Nuclear magnetic resonance spectroscopy studies of ever larger systems have benefited from many different forms of isotope labeling, in particular, site specific isotopic labeling. Site specific 13C labeling of methyl groups has become an established means of probing systems not amenable to traditional methodology. However useful, methyl reporter sites can be limited in number and/or location. Therefore, new complementary site specific isotope labeling strategies are valuable. Aromatic amino acids make excellent probes since they are often found at important interaction interfaces and play significant structural roles. Aromatic side chains have many of the same advantages as methyl containing amino acids including distinct 13C chemical shifts and multiple magnetically equivalent 1H positions. Herein we report economical bacterial production and one-step purification of phenylalanine with 13C incorporation at the Cα, Cγ and Cε positions, resulting in two isolated 1H-13C spin systems. We also present methodology to maximize incorporation of phenylalanine into recombinantly overexpressed proteins in bacteria and demonstrate compatibility with ILV-methyl labeling. Inexpensive, site specific isotope labeled phenylalanine adds another dimension to biomolecular NMR, opening new avenues of study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Babu CR, Flynn PF, Wand AJ (2001) Validation of protein structure from preparations of encapsulated proteins dissolved in low viscosity fluids. J Am Chem Soc 123(11):2691–2692

    Article  Google Scholar 

  • Baez-Viveros JL, Osuna J, Hernandez-Chavez G, Soberon X, Bolivar F, Gosset G (2004) Metabolic engineering and protein directed evolution increase the yield of l-phenylalanine synthesized from glucose in Escherichia coli. Biotechnol Bioeng 87:516–524. doi:10.1002/bit.20159

    Article  Google Scholar 

  • Barker JL, Frost JW (2001) Microbial synthesis of p-hydroxybenzoic acid from glucose. Biotechnol Bioeng 76:376–390. doi:10.1002/bit.10160

    Article  Google Scholar 

  • Ben-Shimon A, Eisenstein M (2010) Computational mapping of anchoring spots on protein surfaces. J Mol Biol 402:259–277. doi:10.1016/j.jmb.2010.07.021

    Article  Google Scholar 

  • Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280:1–9. doi:10.1006/jmbi.1998.1843

    Article  Google Scholar 

  • Boyer JA, Lee AL (2008) Monitoring aromatic picosecond to nanosecond dynamics in proteins via 13C relaxation: expanding perturbation mapping of the rigidifying core mutation, V54A, in eglin c. biochemistry 47:4876–4886. doi:10.1021/bi702330t

    Article  Google Scholar 

  • Butterfield SM, Patel PR, Waters ML (2002) Contribution of aromatic interactions to α-helix stability. J Am Chem Soc 124:9751–9755. doi:10.1021/ja026668q

    Article  Google Scholar 

  • Casteleijn MG, Urtti A, Sarkhel S (2013) Expression without boundaries: cell-free protein synthesis in pharmaceutical research. Int J Pharm 440:39–47. doi:10.1016/j.ijpharm.2012.04.005

    Article  Google Scholar 

  • Chavez MI et al (2005) On the importance of carbohydrate-aromatic interactions for the molecular recognition of oligosaccharides by proteins: NMR studies of the structure and binding affinity of AcAMP2-like peptides with non-natural naphthyl and fluoroaromatic residues. Chemistry 11:7060–7074. doi:10.1002/chem.200500367

    Article  Google Scholar 

  • Churchill CD, Rutledge LR, Wetmore SD (2010) Effects of the biological backbone on stacking interactions at DNA–protein interfaces: the interplay between the backbone... π and π...π components. Phys Chem Chem Phys 12:14515–14526 doi:10.1039/c0cp00550a

    Article  Google Scholar 

  • Duan G, Smith VH, Weaver DF (2000) Characterization of aromatic-amide (side-chain) interactions in proteins through systematic ab initio calculations and data mining analyses. J Phys Chem A 104:4521–4532. doi:10.1021/jp993381f

    Article  Google Scholar 

  • Fischer M, Kloiber K, Hausler J, Ledolter K, Konrat R, Schmid W (2007) Synthesis of a 13C-methyl-group-labeled methionine precursor as a useful tool for simplifying protein structural analysis by NMR spectroscopy. Chembiochem 8:610–612. doi:10.1002/cbic.200600551

    Article  Google Scholar 

  • Gardner KH, Rosen MK, Kay LE (1997) Global folds of highly deuterated, methyl-protonated proteins by multidimensional NMR. Biochemistry 36:1389–1401. doi:10.1021/bi9624806bi9624806

    Article  Google Scholar 

  • Gelis I et al (2007) Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131:756–769. doi:10.1016/j.cell.2007.09.039

    Article  Google Scholar 

  • Giorgi L et al (2011) NMR-based substrate analog docking to Escherichia coli peptidyl-tRNA hydrolase. J Mol Biol 412:619–633. doi:10.1016/j.jmb.2011.06.025

    Article  Google Scholar 

  • Hudson KL, Bartlett GJ, Diehl RC, Agirre J, Gallagher T, Kiessling LL, Woolfson DN (2015) Carbohydrate-aromatic interactions in proteins. J Am Chem Soc 137:15152–15160. doi:10.1021/jacs.5b08424

    Article  Google Scholar 

  • Hughes RC, McFeeters H, Coates L, McFeeters RL (2012) Recombinant production, crystallization and X-ray crystallographic structure determination of the peptidyl-tRNA hydrolase of Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun 68:1472–1476. doi:10.1107/S1744309112045770

    Article  Google Scholar 

  • Ikeda M (2006) Towards bacterial strains overproducing l-tryptophan and other aromatics by metabolic engineering. Appl Microbiol Biotechnol 69:615–626. doi:10.1007/s00253-005-0252-y

    Article  Google Scholar 

  • Ikeda M, Katsumata R (1992) Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing corynebacterium glutamicum strain. Appl Environ Microbiol 58:781–785

    Google Scholar 

  • Kasinath V, Valentine KG, Wand AJ (2013) A 13C labeling strategy reveals a range of aromatic side chain motion in calmodulin. J Am Chem Soc 135:9560–9563. doi:10.1021/ja4001129

    Article  Google Scholar 

  • Kleckner IR, Foster MP (2011) An introduction to NMR-based approaches for measuring protein dynamics. Biochim Biophys Acta 1814:942–968. doi:10.1016/j.bbapap.2010.10.012

    Article  Google Scholar 

  • Krishnarjuna B, Jaipuria G, Thakur A, D’Silva P, Atreya HS (2011) Amino acid selective unlabeling for sequence specific resonance assignments in proteins. J Biomol NMR 49:39–51. doi:10.1007/s10858-010-9459-z

    Article  Google Scholar 

  • Lange OF et al (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320:1471–1475. doi:10.1126/science.1157092

    Article  ADS  Google Scholar 

  • LeMaster DM, Cronan JE Jr (1982) Biosynthetic production of 13C-labeled amino acids with site-specific enrichment. J Biol Chem 257:1224–1230

    Google Scholar 

  • LeMaster DM, Richards FM (1982) Preparative-scale isolation of isotopically labeled amino acids. Anal Biochem 122:238–247

    Article  Google Scholar 

  • Lichtenecker RJ (2014) Synthesis of aromatic (13)C/(2)H-α-ketoacid precursors to be used in selective phenylalanine and tyrosine protein labelling. Org Biomol Chem 12:7551–7560. doi:10.1039/c4ob01129e

    Article  Google Scholar 

  • Lichtenecker RJ, Weinhaupl K, Schmid W, Konrat R (2013) α-Ketoacids as precursors for phenylalanine and tyrosine labelling in cell-based protein overexpression. J Biomol NMR 57:327–331. doi:10.1007/s10858-013-9796-9

    Article  Google Scholar 

  • Lundstrom P et al (2007) Fractional 13 C enrichment of isolated carbons using [1-13C]- or [2-13C]-glucose facilitates the accurate measurement of dynamics at backbone Cα and side-chain methyl positions in proteins. J Biomol NMR 38:199–212. doi:10.1007/s10858-007-9158-6

    Article  Google Scholar 

  • Lutke-Eversloh T, Stephanopoulos G (2008) Combinatorial pathway analysis for improved l-tyrosine production in Escherichia coli: identification of enzymatic bottlenecks by systematic gene overexpression. Metab Eng 10:69–77. doi:10.1016/j.ymben.2007.12.001

    Article  Google Scholar 

  • Madhusudan Makwana K, Mahalakshmi R (2015) Implications of aromatic-aromatic interactions: from protein structures to peptide models. Protein Sci 24:1920–1933. doi:10.1002/pro.2814

    Article  Google Scholar 

  • Maniatis T, Sambrook J (1982) Molecular cloning: a laboratory manual 1st edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

  • McCaldon P, Argos P (1988) Oligopeptide biases in protein sequences and their use in predicting protein coding regions in nucleotide sequences. Proteins 4:99–122. doi:10.1002/prot.340040204

    Article  Google Scholar 

  • McFeeters RL (2002) Backbone chemical shift assignments and dynamics characteriation of an extracellular ligand-binding domain form an iontoroic glutamate receptor. Cornell University, Ithaca

  • McFeeters RL, Altieri AS, Cherry S, Tropea JE, Waugh DS, Byrd RA (2007a) The high-precision solution structure of Yersinia modulating protein YmoA provides insight into interaction with H-NS. Biochemistry 46:13975–13982. doi:10.1021/bi701210j

  • McFeeters RL et al (2007b) The novel fold of scytovirin reveals a new twist for antiviral entry inhibitors. J Mol Biol 369:451–461. doi:10.1016/j.jmb.2007.03.030

  • McFeeters H, Gilbert MJ, Thompson RM, Setzer WN, Cruz-Vera LR, McFeeters RL (2012) Inhibition of essential bacterial peptidyl-tRNA hydrolase activity by tropical plant extracts. Nat Prod Commun 7:1107–1110

    Google Scholar 

  • Miyanoiri Y, Ishida Y, Takeda M, Terauchi T, Inouye M, Kainosho M (2016) Highly efficient residue-selective labeling with isotope-labeled Ile, Leu, and Val using a new auxotrophic E. coli strain. J Biomol NMR 65:109–119. doi:10.1007/s10858-016-0042-0

    Article  Google Scholar 

  • Oh MK, Rohlin L, Kao KC, Liao JC (2002) Global expression profiling of acetate-grown Escherichia coli. J Biol Chem 277:13175–13183. doi:10.1074/jbc.M110809200M110809200

    Article  Google Scholar 

  • Rajesh S, Nietlispach D, Nakayama H, Takio K, Laue ED, Shibata T, Ito Y (2003) A novel method for the biosynthesis of deuterated proteins with selective protonation at the aromatic rings of Phe, Tyr and Trp. J Biomol NMR 27:81–86

    Article  Google Scholar 

  • Rittmann D, Lindner SN, Wendisch VF (2008) Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol 74:6216–6222. doi:10.1128/AEM.00963-08

    Article  Google Scholar 

  • Rosen MK, Gardner KH, Willis RC, Parris WE, Pawson T, Kay LE (1996) Selective methyl group protonation of perdeuterated proteins. J Mol Biol 263:627–636. doi:10.1006/jmbi.1996.0603

    Article  Google Scholar 

  • Santos CN, Stephanopoulos G (2008) Melanin-based high-throughput screen for l-tyrosine production in Escherichia coli. Appl Environ Microbiol 74:1190–1197. doi:10.1128/AEM.02448-07

    Article  Google Scholar 

  • Schneider HJ (2009) Binding mechanisms in supramolecular complexes. Angew Chem Int Ed Engl 48:3924–3977. doi:10.1002/anie.200802947

    Article  Google Scholar 

  • Shortle D (1994) Assignment of amino acid type in 1H-15N correlation spectra by labeling with 14N-amino acids. J Magn Reson Ser B 105:88–90

    Article  Google Scholar 

  • Sinha K, Jen-Jacobson L, Rule GS (2011) Specific labeling of threonine methyl groups for NMR studies of protein-nucleic acid complexes. Biochemistry 50:10189–10191. doi:10.1021/bi201496d

    Article  Google Scholar 

  • Sprenger GA (2007) From scratch to value: engineering Escherichia coli wild type cells to the production of l-phenylalanine and other fine chemicals derived from chorismate. Appl Microbiol Biotechnol 75:739–749. doi:10.1007/s00253-007-0931-y

    Article  Google Scholar 

  • Taylor-Creel K, Hames MC, Holloway WB, McFeeters H, McFeeters RL (2014) Expression, purification, and solubility optimization of peptidyl-tRNA hydrolase 1 from Bacillus cereus. Protein Expr Purif 95:259–264. doi:10.1016/j.pep.2014.01.007

    Article  Google Scholar 

  • Teilum K, Brath U, Lundstrom P, Akke M (2006) Biosynthetic 13C labeling of aromatic side chains in proteins for NMR relaxation measurements. J Am Chem Soc 128:2506–2507. doi:10.1021/ja055660o

    Article  Google Scholar 

  • Thongchuang M, Pongsawasdi P, Chisti Y, Packdibamrung K (2012) Design of a recombinant Escherichia coli for producing l-phenylalanine from glycerol. World J Microbiol Biotechnol 28:2937–2943. doi:10.1007/s11274-012-1104-4

    Article  Google Scholar 

  • Tong KI, Yamamoto M, Tanaka T (2008) A simple method for amino acid selective isotope labeling of recombinant proteins in E. coli. J Biomol NMR 42:59–67. doi:10.1007/s10858-008-9264-0

    Article  Google Scholar 

  • Tugarinov V, Kay LE (2003) Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods. J Am Chem Soc 125:13868–13878. doi:10.1021/ja030345s

    Article  Google Scholar 

  • Wand AJ, Bieber RJ, Urbauer JL, McEvoy RP, Gan Z (1995) Carbon relaxation in randomly fractionally 13C-enriched proteins. J Magn Reson B 108:173–175

    Article  Google Scholar 

  • Wang H, Janowick DA, Schkeryantz JM, Liu X, Fesik SW (1999) A method for assigning phenylalanines in proteins. J Am Chem Soc 121:1611–1612. doi:10.1021/ja983897x

    Article  Google Scholar 

  • Wang J, Liu L, Zhou H, Li J, Du G, Chen J (2011) Comparative study of l-phenylalanine production in the growing and stationary phases during high cell density cultivation of an auxotrophic Escherichia coli. Biotechnol Bioprocess Eng 16:916–922. doi:10.1007/s12257-011-0135-2

    Article  Google Scholar 

  • Wilson RC, Edmondson SP, Flatt JW, Helms K, Twigg PD (2011) The E2-25K ubiquitin-associated (UBA) domain aids in polyubiquitin chain synthesis and linkage specificity. Biochem Biophys Res Commun 405:662–666 doi:10.1016/j.bbrc.2011.01.089

    Article  Google Scholar 

  • Zhang G, Neubert TA (2009) Use of stable isotope labeling by amino acids in cell culture (SILAC) for phophotyrosine protein identification and quantitation. Methods Mol Biol 527:79–92

    Article  Google Scholar 

  • Zhou H, Liao X, Liu L, Wang T, Du G, Chen J (2010) Enhanced L-phenylalanine production by recombinant Escherichia coli BR-42 (pAP-B03) resistant to bacteriophage BP-1 via a two-stage feeding approach. J Ind Microbiol Biotechnol 38:1219–1227. doi:10.1007/s10295-010-0900-9

    Article  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the NIGMS of the National Institute of Health under Award Number 1R15GM093912. The authors thank Mary Hames for cloning and molecular biology support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. McFeeters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramaraju, B., McFeeters, H., Vogler, B. et al. Bacterial production of site specific 13C labeled phenylalanine and methodology for high level incorporation into bacterially expressed recombinant proteins. J Biomol NMR 67, 23–34 (2017). https://doi.org/10.1007/s10858-016-0081-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-016-0081-6

Keywords

Navigation