Skip to main content
Log in

Pulse EPR-enabled interpretation of scarce pseudocontact shifts induced by lanthanide binding tags

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Pseudocontact shifts (PCS) induced by tags loaded with paramagnetic lanthanide ions provide powerful long-range structure information, provided the location of the metal ion relative to the target protein is known. Usually, the metal position is determined by fitting the magnetic susceptibility anisotropy (Δχ) tensor to the 3D structure of the protein in an 8-parameter fit, which requires a large set of PCSs to be reliable. In an alternative approach, we used multiple Gd3+-Gd3+ distances measured by double electron–electron resonance (DEER) experiments to define the metal position, allowing Δχ-tensor determinations from more robust 5-parameter fits that can be performed with a relatively sparse set of PCSs. Using this approach with the 32 kDa E. coli aspartate/glutamate binding protein (DEBP), we demonstrate a structural transition between substrate-bound and substrate-free DEBP, supported by PCSs generated by C3-Tm3+ and C3-Tb3+ tags attached to a genetically encoded p-azidophenylalanine residue. The significance of small PCSs was magnified by considering the difference between the chemical shifts measured with Tb3+ and Tm3+ rather than involving a diamagnetic reference. The integrative sparse data approach developed in this work makes poorly soluble proteins of limited stability amenable to structural studies in solution, without having to rely on cysteine mutations for tag attachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelkader EH, Feintuch A, Yao X, Adams LA, Aurelio L, Graham B, Goldfarb D, Otting G (2015) Protein conformation by EPR and NMR spectroscopy using lanthanide tagging of genetically encoded amino acids. Chem Commun 51:15898–15901

    Article  Google Scholar 

  • Abdelkader EH, Lee MD, Feintuch A, Ramirez Cohen M, Swarbrick JD, Otting G, Graham B, Goldfarb D (2016) A new Gd3+ spin label for Gd3+-Gd3+ distance measurements in proteins produces narrow distance distributions. J Phys Chem Lett (under review)

  • Andrałojć W, Luchinat C, Parigi G, Ravera E (2014) Exploring regions of conformational space occupied by two-domain proteins. J Phys Chem B 118:10576–10587

    Article  Google Scholar 

  • Apponyi MA, Ozawa K, Dixon NE, Otting G (2008) Cell-free protein synthesis for analysis by NMR spectroscopy. In: Kobe B, Guss M, Huber T (eds) Methods in molecular biology 426, structural proteomics: high-throughput methods. Humana Press, Totowa, pp 257–268

    Chapter  Google Scholar 

  • Baldwin ET, Weber IT, St Charles R, Xuan JC, Appella E, Yamada M, Matsushima K, Edwards BF, Clore GM, Gronenborn AM (1991) Crystal structure of interleukin 8: symbiosis of NMR and crystallography. Proc Natl Acad Sci USA 88:502–506

    Article  ADS  Google Scholar 

  • Barbieri R, Bertini I, Lee Y-M, Luchinat C, Velders AH (2002) Structure-independent cross-validation between dipolar couplings originating from internal and external orienting media. J Biomol NMR 22:365–368

    Article  Google Scholar 

  • Bermejo GA, Strub MP, Ho C, Tjandra N (2010) Ligand-free open–closed transitions of periplasmic binding proteins: the case of glutamine-binding protein. Biochemistry 49:1893–1902

    Article  Google Scholar 

  • Bertini I, Luchinat C, Parigi G (2002) Magnetic susceptibility in paramagnetic NMR. Prog NMR Spectr 40:249–273

    Article  Google Scholar 

  • Bertini I, Del Bianco C, Gelis I, Katsaros N, Luchinat C, Parigi G, Peana M, Provenzani A, Zoroddu MA (2004) Experimentally exploring the conformational space sampled by domain reorientation in calmodulin. Proc Natl Acad Sci USA 101:6841–6846

    Article  ADS  Google Scholar 

  • Bertini I, Giachetti A, Luchinat C, Parigi G, Petoukhov MV, Pierattelli R, Ravera E, Svergun DI (2010) Conformational space of flexible biological macromolecules from average data. J Am Chem Soc 132:13553–13558

    Article  Google Scholar 

  • Bleaney B (1972) Nuclear magnetic resonance shifts in solution due to lanthanide ions. J Magn Reson 8:91–100

    ADS  Google Scholar 

  • Chen WN, Loscha KV, Nitsche C, Graham B, Otting G (2014) The dengue virus NS2B-NS3 protease retains the closed conformation in the complex with BPTI. FEBS Lett 588:2206–2211

    Article  Google Scholar 

  • Chin JW, Santoro SW, Martin AB, King DS, Wang L, Schultz PG (2002) Addition of p-azido-l-phenylalanine to the genetic code of Escherichia coli. J Am Chem Soc 124:9026–9027

    Article  Google Scholar 

  • Ching HYV, Demay-Drouhard P, Bertand HC, Policar C, Tabares LC, Un S (2015) Nanometric distance measurements between Mn(II)DOTA centers. Phys Chem Chem Phys. doi:10.1039/C5CP03487F

    Google Scholar 

  • Chu BCH, DeWolf T, Vogel HJ (2013) Role of the two structural domains from the periplasmic Escherichia coli histidine-binding protein HisJ. J Biol Chem 288:31409–31422

    Article  Google Scholar 

  • Chu BCH, Otten R, Krewulak KD, Mulder FAA, Vogel HJ (2014) The solution structure, binding properties, and dynamics of the bacterial siderophore-binding protein FepB. J Biol Chem 289:29219–29234

    Article  Google Scholar 

  • Dasgupta S, Hu X, Keizers PH, Liu WM, Luchinat C, Nagulapalli M, Overhand M, Parigi G, Sgheri L, Ubbink M (2011) Narrowing the conformational space sampled by two-domain proteins with paramagnetic probes in both domains. J Biomol NMR 51:253–263

    Article  Google Scholar 

  • de la Cruz L, Nguyen THD, Ozawa K, Shin J, Graham B, Huber T, Otting G (2011) Binding of low-molecular weight inhibitors promotes large conformational changes in the dengue virus NS2B-NS3 protease: fold analysis by pseudocontact shifts. J Am Chem Soc 133:19205–19215

    Article  Google Scholar 

  • de Lorimier RM, Smith JJ, Dwyer MA, Looger LL, Sali KM, Paavola CD, Rizk SS, Sadigov S, Conrad DW, Loew L, Hellinga HW (2002) Construction of a fluorescent biosensor family. Protein Sci 11:2655–2675

    Article  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system. Palo Alto, CA

  • Duss O, Yulikov M, Jeschke G, Allain FH (2014) EPR-aided approach for solution structure determination of large RNAs or protein-RNA complexes. Nat Commun 5:3669

    Article  ADS  Google Scholar 

  • Hires SA, Zhu Y, Tsien RY (2008) Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proc Natl Acad Sci USA 105:4411–4416

    Article  ADS  Google Scholar 

  • Hu Y, Fan CP, Fu G, Zhu D, Jin Q, Wang DC (2008) Crystal structure of a glutamate/aspartate binding protein complexed with a glutamate molecule: structural basis of ligand specificity at atomic resolution. J Mol Biol 382:99–111

    Article  ADS  Google Scholar 

  • Huang X, de Vera IMS, Veloro AM, Blackburn ME, Kear JL, Carter JD, Rocca JR, Simmerling C, Dunn BM, Fanucci GE (2012) Inhibitor-induced conformational shifts and ligand-exchange dynamics for HIV-1 protease measured by pulsed EPR and NMR spectroscopy. J Phys Chem B 116:14235–14244

    Article  Google Scholar 

  • John M, Headlam M, Dixon NE, Otting G (2007) Assignment of paramagnetic 15N-HSQC spectra by heteronuclear exchange spectroscopy. J Biomol NMR 37:43–51

    Article  Google Scholar 

  • Keizers PHJ, Ubbink M (2011) Paramagnetic tagging for protein structure and dynamics analysis. Prog Nucl Magn Reson Spectrosc 58:88–96

    Article  Google Scholar 

  • Keizers PHJ, Saragliadis A, Hiruma Y, Overhand M, Ubbink M (2008) Design, synthesis, and evaluation of a lanthanide chelating protein probe: CLaNP-5 yields predictable paramagnetic effects independent of environment. J Am Chem Soc 130:14802–14812

    Article  Google Scholar 

  • Kontaxis G, Clore GM, Bax A (2000) Evaluation of cross-correlation effects and measurement of one-bond couplings in proteins with short transverse relaxation times. J Magn Reson 143:184–196

    Article  ADS  Google Scholar 

  • Loh CT, Ozawa K, Tuck K, Barlow N, Huber T, Otting G, Graham B (2013) Lanthanide tags for site-specific ligation to an unnatural amino acid and generation of pseudocontacts shifts in proteins. Bioconjugate Chem 24:260–268

    Article  Google Scholar 

  • Loscha KV, Herlt AJ, Qi R, Huber T, Ozawa K, Otting G (2012) Multiple-site labeling of proteins with unnatural amino acids. Angew Chem Int Ed 51:2243–2246

    Article  Google Scholar 

  • Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, Akerboom J, Gordus A, Renninger SL, Chen TW, Bargmann CI, Orger MB, Schreiter ER, Demb JB, Gan WB, Hires SA, Looger LL (2013) An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods 10:162–170

    Article  Google Scholar 

  • Nagulapalli M, Parigi G, Yuan J, Gsponer J, Deraos G, Bamm VV, Harauz G, Matsoukas J, de Planque MRR, Gerothanassis IP, Babu MM, Luchinat C, Tzakos AG (2012) Recognition pliability is coupled to structural heterogeneity: a calmodulin intrinsically disordered binding region complex. Structure 20:522–533

    Article  Google Scholar 

  • Neylon C, Brown SE, Kralicek AV, Miles CS, Love CA, Dixon NE (2000) Interaction of the Escherichia coli replication terminator protein (Tus) with DNA: a model derived from DNA-binding studies of mutant proteins by surface plasmon resonance. Biochemistry 39(11989):11999

    Google Scholar 

  • Okumoto S, Looger LL, Micheva KD, Reimer RJ, Smith SJ, Frommer WB (2005) Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Proc Natl Acad Sci USA 102:8740–8745

    Article  ADS  Google Scholar 

  • Ortega G, Castaño D, Diercks T, Millet O (2012) Carbohydrate affinity for the glucose–galactose binding protein is regulated by allosteric domain motions. J Am Chem Soc 134:19869–19876

    Article  Google Scholar 

  • Ozawa K, Headlam MJ, Schaeffer PM, Henderson BR, Dixon NE, Otting G (2004) Optimization of an Escherichia coli system for cell-free synthesis of selectively 15N-labelled proteins for rapid analysis by NMR spectroscopy. Eur J Biochem 271:4084–4093

    Article  Google Scholar 

  • Ozawa K, Loscha KV, Kuppan KV, Loh CT, Dixon NE, Otting G (2012) High-yield cell-free protein synthesis for site-specific incorporation of unnatural amino acids at two sites. Biochem Biophys Res Commun 418:652–656

    Article  Google Scholar 

  • Quiocho FA, Ledvina PS (1996) Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Molec Microbiol 20:17–25

    Article  Google Scholar 

  • Russo L, Maestre-Martinez Wolff S, Becker S, Griesinger C (2013) Interdomain dynamics explored by paramagnetic NMR. J Am Chem Soc 135:17111–17120

    Article  Google Scholar 

  • Schmitz C, Stanton-Cook MJ, Su XC, Otting G, Huber T (2008) Numbat: an interactive software tool for fitting Δχ-tensors to molecular coordinates using pseudocontact shifts. J Biomol NMR 41:179–189

    Article  Google Scholar 

  • Shishmarev D, Otting G (2013) How reliable are pseudocontact shifts induced in proteins and ligands by mobile paramagnetic metal tags? A modelling study. J Biomol NMR 56:203–216

    Article  Google Scholar 

  • Skinner SP, Liu WM, Hiruma Y, Timmer M, Blok A, Hass MAS, Ubbink M (2015) Delicate conformational balance of the redox enzyme cytochrome P450cam. Proc Natl Acad Sci 112:9022–9027

    Article  ADS  Google Scholar 

  • Song Y, Meade TJ, Astashkin AV, Klein EL, Enemark JH, Raitsimring A (2011) Pulsed dipolar spectroscopy distance measurements in biomacromolecules labeled with Gd(III) markers. J Magn Reson 210:59–68

    Article  ADS  Google Scholar 

  • Su XC, Otting G (2010) Paramagnetic labelling of proteins and oligonucleotides for NMR. J Biomol NMR 46:101–112

    Article  Google Scholar 

  • Sunnerhagen M, Olah GA, Stenflo J, Forsen S, Drakenberg T, Trewhella J (1996) The relative orientation of Gla and EGF domains in coagulation factor X is altered by Ca2+ binding to the first EGF domain. A combined NMR small angle X-ray scattering study. Biochemistry 35:11547–11559

    Article  Google Scholar 

  • Tang C, Schwieters CD, Clore GM (2007) Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR. Nature 449:1078–1082

    Article  ADS  Google Scholar 

  • Torizawa T, Shimizu M, Taoka M, Miyano H, Kainosho M (2004) Efficient production of isotopically labeled proteins by cell-free synthesis: a practical protocol. J Biomol NMR 30:311–325

    Article  Google Scholar 

  • van den Bedem H, Fraser JS (2015) Integrative, dynamic structural biology at atomic resolution – it’s about time. Nat Methods 12:307–318

    Article  Google Scholar 

  • Ward AB, Sali A, Wilson IA (2013) Integrative structural biology. Science 339:913–915

    Article  ADS  Google Scholar 

  • Wu PSC, Ozawa K, Lim SP, Vasudevan S, Dixon NE, Otting G (2007) Cell-free transcription/translation from PCR amplified DNA for high-throughput NMR studies. Angew Chem Int Ed 46:3356–3358

    Article  Google Scholar 

  • Yagi H, Banerjee D, Graham B, Huber T, Goldfarb D, Otting G (2011) Gadolinium tagging for high-precision measurements of 6 nm distances in protein assemblies by EPR. J Am Chem Soc 133:10418–10421

    Article  Google Scholar 

  • Yang Y, Ramelot TA, McCarrick RM, Ni S, Feldmann EA, Cort JR, Wang H, Ciccosanti C, Jiang M, Janjua H, Acton TB, Xiao R, Everett JK, Montelione GT, Kennedy MA (2010) Combining NMR and EPR methods for homodimer protein structure determination. J Am Chem Soc 132:11910–11913

    Article  Google Scholar 

  • Yang Y, Ramelot TA, McCarrick RM, Ni S, McCarrick RM, Kennedy MA (2013) Measurement of rate constants for homodimer subunit exchange using double electron-electron resonance and paramagnetic relaxation enhancements. J Biomol NMR 55:47–58

    Article  Google Scholar 

  • Young TS, Ahmad I, Yin JA, Schultz PG (2010) An enhanced system for unnatural amino acid mutagenesis in E. coli. J Mol Biol 395:361–374

    Article  Google Scholar 

  • Young DD, Young TS, Jahnz M, Ahmad I, Spraggon G, Schultz PG (2011) An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity. Biochemistry 50:1894–1900

    Article  Google Scholar 

Download references

Acknowledgments

We thank Professor Peter G. Schultz and Dr. Colin C. Jackson for genes of the orthogonal tRNA/aminoacyl-tRNA synthetase system and DEBP, respectively, and Dr. Ruhu Qi for help with primer design. Financial support by the Australian Research Council (ARC) and an Australia-Weizmann Making Connections grant is gratefully acknowledged. B. G. thanks the ARC for a Future Fellowship. In part, this research was made possible by the historic generosity of the Harold Perlman family. D. G. holds the Erich Klieger professorial chair in Chemical Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gottfried Otting.

Additional information

The first two authors contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3094 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelkader, E.H., Yao, X., Feintuch, A. et al. Pulse EPR-enabled interpretation of scarce pseudocontact shifts induced by lanthanide binding tags. J Biomol NMR 64, 39–51 (2016). https://doi.org/10.1007/s10858-015-0003-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-015-0003-z

Keywords

Navigation