Skip to main content
Log in

Thermal stability of chicken brain α-spectrin repeat 17: a spectroscopic study

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Spectrin is a rod-like multi-modular protein that is mainly composed of triple-helical repeats. These repeats show very similar 3D-structures but variable conformational and thermodynamical stabilities, which may be of great importance for the flexibility and dynamic behaviour of spectrin in the cell. For instance, repeat 17 (R17) of the chicken brain spectrin α-chain is four times less stable than neighbouring repeat 16 (R16) in terms of ∆G. The structure of spectrin repeats has mainly been investigated by X-ray crystallography, but the structures of a few repeats, e.g. R16, have also been determined by NMR spectroscopy. Here, we undertook a detailed characterization of the neighbouring R17 by NMR spectroscopy. We assigned most backbone resonances and observed NOE restraints, relaxation values and coupling constants that all indicated that the fold of R17 is highly similar to that of R16, in agreement with previous X-ray analysis of a tandem repeat of the two domains. However, 15N heteronuclear NMR spectra measured at different temperatures revealed particular features of the R17 domain that might contribute to its lower stability. Conformational exchange appeared to alter the linker connecting R17 to R16 as well as the BC-loop in close proximity. In addition, heat-induced splitting was observed for backbone resonances of a few spatially related residues including V99 of helix C, which in R16 is replaced by the larger hydrophobic tryptophan residue that is relatively conserved among other spectrin repeats. These data support the view that the substitution of tryptophan by valine at this position may contribute to the lower stability of R17.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Amino acid numbering in parentheses is according to the nomenclature of Yan et al. (1993).

References

  • An XL, Zhang XH, Salomao M, Guo XH, Yang Y, Wu Y, Gratzer W, Baines AJ, Mohandas N (2006) Thermal stabilities of brain spectrin and the constituent repeats of subunits. Biochemistry 45(45):13670–13676. doi:10.1021/bi061368x

    Article  Google Scholar 

  • Batey S, Scott KA, Clarke J (2006) Complex folding kinetics of a multidomain protein. Biophys J 90(6):2120–2130. doi:10.1529/biophysj.105.072710

    Article  Google Scholar 

  • Bennett V, Gilligan DM (1993) The spectrin-based membrane skeleton and micron-scala organization of the plasma-membrane. Annu Rev Cell Biol 9:27–66

    Article  Google Scholar 

  • Carugo KD, Banuelos S, Saraste M (1997) Crystal structure of a calponin homology domain. Nat Struct Biol 4(3):175–179

    Article  Google Scholar 

  • Davis AL, Keeler J, Laue ED, Moskau D (1992) Experiments for recording pure-absorption heteronuclear correlation spectra using pulsed field gradients. J Magn Reson 98(1):207–216

    Google Scholar 

  • de la Torre JG, Huertas ML, Carrasco B (2000) HYDRONMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations. J Magn Reson 147(1):138–146. doi:10.1006/jmre.2000.2170

    Article  ADS  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe—a multidimensional spectral processing system based on UNIX Pipes. J Biomol NMR 6(3):277–293

    Article  Google Scholar 

  • Diercks T, Coles M, Kessler H (1999) An efficient strategy for assignment of cross-peaks in 3D heteronuclear NOESY experiments. J Biomol NMR 15(2):177–180

    Article  Google Scholar 

  • Dosset P, Hus JC, Blackledge M, Marion D (2000) Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data. J Biomol NMR 16(1):23–28

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. doi:10.1093/nar/gkh340

    Article  Google Scholar 

  • Fung LWM, Lu HZ, Hjelm RP, Johnson ME (1986) Selective detection of rapid motions in spectrin by NMR. FEBS Lett 197(1–2):234–238

    Article  Google Scholar 

  • Fung LWM, Lu HZ, Hjelm RP, Johnson ME (1989) Quantitative detection of rapid motions in spectrin by NMR. Life Sci 44(11):735–740

    Article  Google Scholar 

  • Grum VL, Li DN, MacDonald RI, Mondragon A (1999) Structures of two repeats of spectrin suggest models of flexibility. Cell 98(4):523–535

    Article  Google Scholar 

  • Grzesiek S, Bax A (1993a) Amino-acid type determination in the sequential assignment procedure of uniformly C-13/N-15-enriched proteins. J Biomol NMR 3(2):185–204

    Article  Google Scholar 

  • Grzesiek S, Bax A (1993b) The importance of not saturating H2O in protein NMR—application to sensitivity enhancement and NOE measurements. J Amer Chem Soc 115(26):12593–12594

    Article  Google Scholar 

  • Grzesiek S, Anglister J, Bax A (1993) Correlation of backbone amide and aliphatic side-chain resonances in C-13/N-15-enriched proteins by isotropic mixing of C-13 magnetization. J Magn Reson B 101(1):114–119

    Google Scholar 

  • Harris RK, Becker ED, De Menezes SMC, Granger P, Hoffman RE, Zilm KW (2008) Further conventions for NMR shielding and chemical shifts (IUPAC recommendations 2008). Pure Appl Chem 80(1):59–84. doi:10.1351/pac200880010059

    Article  Google Scholar 

  • Kamath U, Shriver JW (1989) Characteriazation of thermotropic state changes in myosin subfragment-1 and heavy-meromyosin by UV difference spectroscopy. J Biol Chem 264(10):5586–5592

    Google Scholar 

  • Kay LE, Torchia DA, Bax A (1989) Backbone dynamics of proteins as studied by N-15 inverse detected heteronuclear NMR-spectroscopy—application to staphylococcal nuclease. Biochemistry 28(23):8972–8979

    Article  Google Scholar 

  • Keller RLJ (2005) Optimizing the process of nuclear magnetic resonance spectrum analysis and computer aided resonance assignment. ETH Zürich, Zürich

    Google Scholar 

  • Kowalski K, Merkel AL, Booker GW (2004) H-1, C-13 and N-15 resonance assignments of the third spectrin repeat of alpha-actinin-4. J Biomol NMR 29(4):533–534. doi:10.1023/b:jnmr.0000034342.20537.01

    Article  Google Scholar 

  • Kusunoki H, Macdonald RI, Mondragon A (2004a) Structural insights into the stability and flexibility of unusual erythroid spectrin repeats. Structure 12(4):645–656. doi:10.1016/j.str.2004.02.022

    Article  Google Scholar 

  • Kusunoki H, Minasov G, MacDonald RI, Mondragon A (2004b) Independent movement, dimerization and stability of tandem repeats of chicken brain alpha-spectrin. J Mol Biol 344(2):495–511. doi:10.1016/j.jmb.2004.09.019

    Article  Google Scholar 

  • Legardinier S, Legrand B, Raguenes-Nicol C, Bondon A, Hardy S, Tascon C, Le Rumeur E, Hubert JF (2009) A two-amino acid mutation encountered in Duchenne muscular dystrophy decreases stability of the rod domain 23 (R23) spectrin-like repeat of dystrophin. J Biol Chem 284(13):8813–8823. doi:10.1074/jbc.M805846200

    Google Scholar 

  • Lipari G, Szabo A (1982a) Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc 104(17):4546–4559

    Article  Google Scholar 

  • Lipari G, Szabo A (1982b) Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules. 2. Analysis of experimental results. J Am Chem Soc 104(17):4559–4570

    Article  Google Scholar 

  • MacDonald RI, Musacchio A, Holmgren RA, Saraste M (1994) Invariant tryptophan at a shielded site promotes folding of the conformational unit of spectrin. Proc Natl Acad Sci 91(4):1299–1303

    Article  ADS  Google Scholar 

  • Montelione GT, Lyons BA, Emerson SD, Tashiro M (1992) An efficient triple resonance experiments using C-13 isotropic mixing for determining sequence-specific resonance assignments of isotopically-enriched proteins. J Am Chem Soc 114(27):10974–10975

    Article  Google Scholar 

  • Musacchio A, Noble M, Pauptit R, Wierenga R, Saraste M (1992) Crystal-structure of a src-homology-3 (SH3) domain. Nature 359(6398):851–855

    Article  ADS  Google Scholar 

  • Pantazatos DP, MacDonald RI (1997) Site-directed mutagenesis of either the highly conserved Trp-22 or the moderately conserved Trp-95 to a large, hydrophobic residue reduces the thermodynamic stability of a spectrin repeating unit. J Biol Chem 272(34):21052–21059

    Article  Google Scholar 

  • Park S, Caffrey MS, Johnson ME, Fung LWM (2003) Solution structural studies on human erythrocyte alpha-spectrin tetramerization site. J Biol Chem 278(24):21837–21844. doi:10.1074/jbc.M300617200

    Article  Google Scholar 

  • Parry DAD, Dixon TW, Cohen C (1992) Analysis of the 3-alpha-helix motif in the spectrin superfamily of proteins. Biophys J 61(4):858–867

    Article  Google Scholar 

  • Pascual J, Pfuhl M, Rivas G, Pastore A, Saraste M (1996) The spectrin repeat folds into a three-helix bundle in solution. FEBS Lett 383(3):201–207

    Article  Google Scholar 

  • Pascual J, Pfuhl M, Walther D, Saraste M, Nilges M (1997) Solution structure of the spectrin repeat: a left-handed antiparallel triple-helical coiled-coil. J Mol Biol 273:740–751

    Article  Google Scholar 

  • Sahr KE, Laurila P, Kotula L, Scarpa AL, Coupal E, Leto TL, Linnenbach AJ, Winkelmann JC, Speicher DW, Marchesi VT, Curtis PJ, Forget BG (1990) The complete cDNA and polypeptide sequences of human erythroid alpha-spectrin. J Biol Chem 265(8):4434–4443

    Google Scholar 

  • Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog Nucl Magn Reson Spectrosc 34(2):93–158

    Article  Google Scholar 

  • Schanda P, Kupce E, Brutscher B (2005) SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J Biomol NMR 33(4):199–211. doi:10.1007/s10858-005-4425-x

    Article  Google Scholar 

  • Schubert M, Smalla M, Schmieder P, Oschkinat H (1999) MUSIC in triple-resonance experiments: amino acid type-selective H-1-N-15 correlations. J Magn Reson 141(1):34–43

    Article  ADS  Google Scholar 

  • Schubert M, Oschkinat H, Schmieder P (2001a) MUSIC and aromatic residues: Amino acid type-selective H-1-N-15 correlations, III. J Magn Reson 153(2):186–192. doi:10.1006/jmre.2001.2447

    Article  ADS  Google Scholar 

  • Schubert M, Oschkinat H, Schmieder P (2001b) MUSIC, selective pulses, and tuned delays: Amino acid type-selective H-1-N-15 correlations, II. J Magn Reson 148(1):61–72

    Article  ADS  Google Scholar 

  • Travé G, Lacombe PJ, Pfuhl M, Saraste M, Pastore A (1995) Molecular mechanism of the calcium-induced conformational change in the spectrin EF-hands. EMBO J 14(20):4922–4931

    Google Scholar 

  • Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas P, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins Struct Funct Bioinform 59(4):687–696. doi:10.1002/prot.20449

    Article  Google Scholar 

  • Vuister GW, Bax A (1993) Quantitative J correlation—a new approach for measuring homonuclear 3-bond J(H(N)H(alpha)) coupling-constants in N-15-enriched proteins. J Am Chem Soc 115(17):7772–7777

    Article  Google Scholar 

  • Wang YJ, Jardetzky O (2002) Probability-based protein secondary structure identification using combined NMR chemical-shift data. Protein Sci 11(4):852–861. doi:10.1110/ps.3180102

    Article  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191. doi:10.1093/bioinformatics/btp033

    Article  Google Scholar 

  • Weisemann R, Ruterjans H, Schwalbe H, Schleucher J, Bermel W, Griesinger C (1994) Determination of H(N), H-alpha and H(N), C′ coupling-constants in C-13, N-15-labeled proteins. J Biomol NMR 4(2):231–240

    Article  Google Scholar 

  • Winkelmann JC, Costa FF, Linzie BL, Forget BG (1990) Beta-spectrin in human skeletal-muscle–tissue-specific differential processing of 3′ beta-spectrin pre-messenger-RNA generates a beta-spectrin isoform with a unique carboxyl terminus. J Biol Chem 265(33):20449–20454

    Google Scholar 

  • Wishart DS, Sykes BD, Richards FM (1991) Relationship between nuclear-magnetic-resonance chemical-shift and protein secondary structure. J Mol Biol 222(2):311–333

    Article  Google Scholar 

  • Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD (1995) H-1, C-13 and N-15 chemical-shift referencing in biomolecular NMR. J Biomol NMR 6(2):135–140

    Article  Google Scholar 

  • Wüthrich K, Billeter M, Braun W (1984) Polypeptide secondary structure determination by nuclear magnetic-resonance observation of short proton proton distances. J Mol Biol 180(3):715–740

    Article  Google Scholar 

  • Yamazaki T, Formankay JD, Kay LE (1993) 2-Dimensional NMR experiments for correlating C-13-beta and H-1-delta/epsilon chemical-shifts of aromatic residues in C-13-labeled proteins via scalar couplings. J Am Chem Soc 115(23):11054–11055

    Article  Google Scholar 

  • Yan Y, Winograd E, Viel A, Cronin T, Harrison SC, Branton D (1993) Crystal-structure of the repetetive segments of spectrin. Science 262:2027–2030

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to Anne Chapelle for preparation of isotopically labelled samples of the R17 domain, and to Jarl Underhaug for help with the NMRPipe-scripts for the relaxation study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnt J. Raae.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 269 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenner, A.K., Kieffer, B., Travé, G. et al. Thermal stability of chicken brain α-spectrin repeat 17: a spectroscopic study. J Biomol NMR 53, 71–83 (2012). https://doi.org/10.1007/s10858-012-9620-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-012-9620-y

Keywords

Navigation