Skip to main content
Log in

Al NMR: a novel NMR data processing program optimized for sparse sampling

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Sparse sampling in biomolecular multidimensional NMR offers increased acquisition speed and resolution and, if appropriate conditions are met, an increase in sensitivity. Sparse sampling of indirectly detected time domains combined with the direct truly multidimensional Fourier transform has elicited particular attention because of the ability to generate a final spectrum amenable to traditional analysis techniques. A number of sparse sampling schemes have been described including radial sampling, random sampling, concentric sampling and variations thereof. A fundamental feature of these sampling schemes is that the resulting time domain data array is not amenable to traditional Fourier transform based processing and phasing correction techniques. In addition, radial sampling approaches offer a number of advantages and capabilities that are also not accessible using standard NMR processing techniques. These include sensitivity enhancement, sub-matrix processing and determination of minimal sets of sampling angles. Here we describe a new software package (Al NMR) that enables these capabilities in the context of a general NMR data processing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson E (1999) LAPACK Users’ Guide. Software, environments, tools, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia

  • Barber CB, Dobkin DP, Huhdanpaa H (1996) The quickhull algorithm for convex hulls. ACM T Math Software 22:469–483

    Article  MathSciNet  MATH  Google Scholar 

  • Barkhuijsen H, Debeer R, Bovee WMMJ, Creyghton JHN, Vanormondt D (1985) Application of linear prediction and singular value decomposition (LPSVD) to determine NMR frequencies and intensities from the FID. Magn Reson Med 2:86–89

    Article  Google Scholar 

  • Bodenhausen G, Ernst R (1982) Direct determination of rate constants of slow dynamic processes by two-dimensional “Accordion” spectroscopy in nuclear magnetic resonance. J Am Chem Soc 104:1304–1309

    Article  Google Scholar 

  • Brutscher B, Morelle N, Cordier F, Marion D (1995) Determination of an initial set of NOE-derived distance constraints for the structure determination of 15 N/13C-labeled proteins. J Magn Reson B 109:238–242

    Article  Google Scholar 

  • Callaghan PT, Mackay AL, Pauls KP, Soderman O, Bloom M (1984) The high fidelity extraction of weak broad lines from NMR-spectra containing large solvent peaks. J Magn Reson 56:101–109

    Google Scholar 

  • Coggins BE, Zhou P (2006) Polar Fourier transforms of radially sampled NMR data. J Magn Reson 182:84–95

    Article  ADS  Google Scholar 

  • Coggins BE, Zhou P (2007) Sampling of the NMR time domain along concentric rings. J Magn Reson 184:207–221

    Article  ADS  Google Scholar 

  • Coggins BE, Zhou P (2008) High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN. J Biomol NMR 42:225–239

    Article  Google Scholar 

  • Coggins BE, Venters RA, Zhou P (2005) Filtered backprojection for the reconstruction of a high-resolution (4, 2) D CH3-NHNOESY spectrum on a 29 kDa protein. J Am Chem Soc 127:11562–11563

    Article  Google Scholar 

  • Coggins BE, Venters RA, Zhou P (2010) Radial sampling for fast NMR: concepts and practices over three decades. Prog Nucl Magn Reson Spectrosc 57:381–419

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRpipe—A multidimensional spectral processing system based on unix pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Eghbalnia HR, Bahrami A, Tonelli M, Hallenga K, Markley JL (2005) High-resolution iterative frequency identification for NMR as a general strategy for multidimensional data collection. J Am Chem Soc 127:12528–12536

    Article  Google Scholar 

  • Freeman R, Kupce E (2003) New methods for fast multidimensional NMR. J Biomol NMR 27:101–113

    Article  Google Scholar 

  • Frigo M, Johnson SG (2005) The design and implementation of FFTW3. Proc IEEE 93:216–231

    Article  Google Scholar 

  • Gesmar H, Led JJ (1988) Spectral estimation of complex time-domain NMR signals by linear prediction. J Magn Reson 76:183–192

    Google Scholar 

  • Gledhill JM, Wand AJ (2007) Phasing arbitrarily sampled multidimensional NMR data. J Magn Reson 187:363–370

    Article  ADS  Google Scholar 

  • Gledhill JM, Wand AJ (2008) Optimized angle selection for radial sampled NMR experiments. J Magn Reson 195:169–178

    Article  ADS  Google Scholar 

  • Gledhill JM, Wand AJ (2010) SEnD NMR: sensitivity enhanced n-dimensional NMR. J Magn Reson 202:250–258

    Article  ADS  Google Scholar 

  • Gledhill JM, Walters BT, Wand AJ (2009) AMORE-HX: a multidimensional optimization of radial enhanced NMR-sampled hydrogen exchange. J Biomol NMR 45:233–239

    Article  Google Scholar 

  • Hiller S, Fiorito F, Wuthrich K, Wider G (2005) Automated projection spectroscopy (APSY). Proc Natl Acad Sci USA 102:10876–10881

    Article  ADS  Google Scholar 

  • Hoch JC, Stern AS (1996) NMR data processing. Wiley-Liss, New York

  • Hoch JC, Maciejewski MW, Filipovic B (2008) Randomization improves sparse sampling in multidimensional NMR. J Magn Reson 193:317–320

    Article  ADS  Google Scholar 

  • Jaravine V, Ibraghimov I, Orekhov VY (2006) Removal of a time barrier for high-resolution multidimensional NMR spectroscopy. Nat Method 3:605–607

    Article  Google Scholar 

  • Kazimierczuk K, Kozminski W, Zhukov I (2006a) Two-dimensional Fourier transform of arbitrarily sampled NMR data sets. J Magn Reson 179:323–328

    Article  ADS  Google Scholar 

  • Kazimierczuk K, Zawadzka A, Kozminski W, Zhukov I (2006b) Random sampling of evolution time space and Fourier transform processing. J Biomol NMR 36:157–168

    Article  Google Scholar 

  • Kazimierczuk K, Zawadzka A, Kozminski W, Zhukov I (2007) Lineshapes and artifacts in multidimensional Fourier transform of arbitrary sampled NMR data sets. J Magn Reson 188:344–356

    Article  ADS  Google Scholar 

  • Kazimierczuk K, Zawadzka A, Kozminski W (2008) Optimization of random time domain sampling in multidimensional NMR. J Magn Reson 192:123–130

    Article  ADS  Google Scholar 

  • Kazimierczuk K, Stanek J, Zawadzka-Kazimierczuk A, Kozminski W (2010a) Random sampling in multidimensional NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 57:420–434

    Article  Google Scholar 

  • Kazimierczuk K, Zawadzka-Kazimierczuk A, Kozminski W (2010b) Non-uniform frequency domain for optimal exploitation of non-uniform sampling. J Magn Reson 205:286–292

    Article  ADS  Google Scholar 

  • Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J Am Chem Soc 125:1385–1393

    Article  Google Scholar 

  • Kupce E, Freeman R (2003) Reconstruction of the three-dimensional NMR spectrum of a protein from a set of plane projections. J Biomol NMR 27:383–387

    Article  Google Scholar 

  • Kupce E, Freeman R (2004) Projection-reconstruction technique for speeding up multidimensional NMR spectroscopy. J Am Chem Soc 126:6429–6440

    Article  Google Scholar 

  • Marion D (2006) Processing of ND NMR spectra sampled in polar coordinates: a simple Fourier transform instead of a reconstruction. J Biomol NMR 36:45–54

    Article  Google Scholar 

  • Marion D, Ikura M, Bax A (1989) Improved solvent suppression in one-dimensional and two-dimensional NMR-spectra by convolution of time-domain data. J Magn Reson 84:425–430

    Google Scholar 

  • Otting G, Widmer H, Wagner G, Wuthrich K (1986) Origin of T1 and T2 ridges in 2d NMR-spectra and procedures for suppression. J Magn Reson 66:187–193

    Google Scholar 

  • Pannetier N, Houben K, Blanchard L, Marion D (2007) Optimized 3D-NMR sampling for resonance assignment of partially unfolded proteins. J Magn Reson 186:142–149

    Article  ADS  Google Scholar 

  • Stern AS, Li KB, Hoch JC (2002) Modern spectrum analysis in multidimensional NMR spectroscopy: comparison of linear-prediction extrapolation and maximum-entropy reconstruction. J Am Chem Soc 124:1982–1993

    Article  Google Scholar 

  • Szyperski T, Wider G, Bushweller JH, Wuthrich K (1993) Reduced dimensionality in triple-resonance NMR experiments. J Am Chem Soc 115:9307–9308

    Article  Google Scholar 

  • Venters RA, Coggins BE, Kojetin D, Cavanagh J, Zhou P (2005) (4, 2)D projection-reconstruction experiments for protein backbone assignment: application to human carbonic anhydrase II and calbindin D-28 K. J Am Chem Soc 127:8785–8795

    Article  Google Scholar 

  • Zhu G, Bax A (1992) Improved linear prediction of damped NMR signals using modified forward backward linear prediction. J Magn Reson 100:202–207

    Google Scholar 

Download references

Acknowledgments

We thank Vignesh Kasinath and Kathleen Valentine for helpful discussion. This work was supported by NIH grants DK 39806 and GM 081520, by NSF grants MCB 0842814 and DMR 05-20020 and by a grant from the Mathers Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Joshua Wand.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 175 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gledhill, J.M., Wand, A.J. Al NMR: a novel NMR data processing program optimized for sparse sampling. J Biomol NMR 52, 79–89 (2012). https://doi.org/10.1007/s10858-011-9584-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-011-9584-3

Keywords

Navigation