Skip to main content
Log in

Broadband 15N–13C dipolar recoupling via symmetry-based RF pulse schemes at high MAS frequencies

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

An approach for generating efficient \( {\rm{RN}}_{n}^{\nu_{\rm{S}}, {\nu_{\rm{k}}}} \) symmetry-based dual channel RF pulse schemes for γ-encoded broadband 15N–13C dipolar recoupling at high magic angle spinning frequencies is presented. The method involves the numerical optimisation of the RF phase-modulation profile of the basic “R” element so as to obtain heteronuclear double quantum dipolar recoupling sequences with satisfactory magnetisation transfer characteristics. The basic “R” element was implemented as a sandwich of a small number of short pulses of equal duration with each pulse characterised by a RF phase and amplitude values. The performance characteristics of the sequences were evaluated via numerical simulations and 15N–13C chemical shift correlation experiments. Employing such 13C–15N double-quantum recoupling sequences and the multiple receiver capabilities available in the current generation of NMR spectrometers, the possibility to simultaneously acquire 3D NCC and CNH chemical shift correlation spectra is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bak M, Nielsen NC (1997) REPULSION, a novel approach to efficient powder averaging in solid state NMR. J Magn Reson 125:132–139

    Article  ADS  Google Scholar 

  • Baldus M (2002) Correlation experiments for assignment and structure elucidation of immobilized polypeptides under magic angle spinning. Prog Nucl Magn Reson Spectrosc 41:1–47

    Article  Google Scholar 

  • Bennett AE, Griffin RG, Vega S (1994) Recoupling of homo- and heteronuclear dipolar interactions in rotating solids. NMR basic principles and progress, vol 33. Springer, Berlin, pp 1–77

    Google Scholar 

  • Bennett AE, Rienstra CM, Griffiths JM, Zhen W, Lansbury PT, Griffin RG (1998) Homonuclear radio frequency-driven recoupling in rotating solids. J Chem Phys 108:9463–9479

    Article  ADS  Google Scholar 

  • Brinkmann A, Levitt M (2001) Symmetry principles in the nuclear magnetic resonance of spinning solids: heteronuclear recoupling by generalized Hartmann-Hahn sequences. J Chem Phys 115:357–384

    Article  ADS  Google Scholar 

  • Castellani F, van Rossum BJ, Diehl A, Rehbein K, Oschkinat H (2003) Determination of solid-state NMR structures of proteins by means of three-dimensional 15N–13C-13C dipolar correlation spectroscopy and chemical shift analysis. Biochemistry 42:11476–11483

    Article  Google Scholar 

  • Cheng VB, Suzukawa HH, Wolfsberg M (1973) Investigations of a nonrandom numerical method for multidimensional integration. J Chem Phys 59:3992–3999

    Article  MathSciNet  ADS  Google Scholar 

  • De Paepe G, Lesage A, Emsley L (2003) The performance of phase modulated heteronuclear dipolar decoupling schemes in fast magic-angle-spinning nuclear magnetic resonance experiments. J Chem Phys 119:4833–4841

    Article  ADS  Google Scholar 

  • Detken A, Hardy EH, Ernst M, Kainosho M, Kawakami T, Aimoto S, Meier BH (2001) Methods for sequential resonance assignment in solid, uniformly 13C, 15N labelled peptides: quantification and application to antamanide. J Biomol NMR 20:203–221

    Article  Google Scholar 

  • Dusold S, Sebald A (2000) Dipolar recoupling under magic-angle spinning conditions. Annu Rep NMR Spectrosc 41:185–264

    Article  Google Scholar 

  • Forrest S (1993) Genetic algorithms—principles of natural-selection applied to computation. Science 261:872–878

    Article  ADS  Google Scholar 

  • Freeman R, Wu XL (1987) Design of magnetic resonance experiments by genetic evolution. J Magn Reson 75:184–189

    Google Scholar 

  • Frericks HL, Zhou DH, Yap LL, Gennis RB, Rienstra CM (2006) Magic-angle spinning solid-state NMR of a 144 kDa membrane protein complex: E. coli cytochrome bo3 oxidase. J Biomol NMR 36:55–71

    Article  Google Scholar 

  • Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101

    Article  ADS  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Massachusetts

    MATH  Google Scholar 

  • Griffin RG (1998) Dipolar recoupling in MAS spectra of biological solids. Nature Struct Biol 5:508–512

    Article  Google Scholar 

  • Hansen JO, Kehlet C, Bjerring M, Vosegaard T, Glaser SJ, Khaneja N, Nielsen NC (2007) Optimal control based design of composite dipolar recoupling experiments by analogy to single-spin inversion pulses. Chem Phys Lett 447:154–161

    Article  ADS  Google Scholar 

  • Haupt RL, Haupt SE (2004) Practical genetic algorithms. Wiley, Hoboken

    MATH  Google Scholar 

  • Herbst C, Riedel K, Ihle Y, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2008) MAS solid state NMR of RNAs with multiple receivers. J Biomol NMR 41:121–125

    Article  Google Scholar 

  • Herbst C, Herbst J, Kirschstein A, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2009a) Design of high-power, broadband 180° pulses and mixing sequences for fast MAS solid state chemical shift correlation NMR spectroscopy. J Biomol NMR 43:51–61

    Article  Google Scholar 

  • Herbst C, Herbst J, Kirschstein A, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2009b) Recoupling and decoupling of nuclear spin interactions at high MAS frequencies: numerical design of CN νn symmetry-based RF pulse schemes. J Biomol NMR 44:175–184

    Article  Google Scholar 

  • Herbst C, Herbst J, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2009c) Numerical design of RN νn symmetry-based RF pulse schemes for recoupling and decoupling of nuclear spin interactions at high MAS frequencies. J Biomol NMR 44:235–244

    Article  Google Scholar 

  • Hong M (1999) Resonance assignment of 13C/15N labeled solid proteins by two- and three-dimensional magic-angle-spinning NMR. J Biomol NMR 15:1–14

    Article  Google Scholar 

  • Judson R (1997) Genetic algorithms and their use in chemistry. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 10. VCH, New York, pp 1–73

    Google Scholar 

  • Kehlet C, Bjerring M, Sivertsen AC, Kristensen T, Enghild JJ, Glaser SJ, Khaneja N, Nielsen NC (2007) Optimal control based NCO and NCA experiments for spectral assignment in biological solid-state NMR spectroscopy. J Magn Reson 188:216

    Article  ADS  Google Scholar 

  • Kupce E, Freeman R (2004) Projection-reconstruction technique for speeding up multidimensional NMR spectroscopy. J Am Chem Soc 126:6429–6440

    Article  Google Scholar 

  • Levitt MH (2002) Symmetry-based pulse sequences in magic-angle spinning solid-state NMR. In: Grant DM, Harris RK (eds) Encyclopedia of nuclear magnetic resonance. Wiley, Chichester

    Google Scholar 

  • Nielsen AB, Bjerring M, Nielsen JT, Nielsen NC (2009) Symmetry-based dipolar recoupling by optimal control: band-selective experiments for assignment of solid-state NMR spectra of proteins. J Chem Phys 131:025101

    Article  ADS  Google Scholar 

  • Pauli J, Baldus M, van Rossum B, de Groot H, Oschkinat H (2001) Backbone and side-chain 13C and 15N signal assignments of the α-spectrin SH3 domain by magic angle spinning solid-state NMR at 17.6 Tesla. ChemBioChem 2:272–281

    Article  Google Scholar 

  • Riedel K, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2005) TEDOR with adiabatic inversion pulses: resonance assignments of 13C/15N labelled RNAs. J Biomol NMR 31:49–57

    Article  Google Scholar 

  • Rienstra CM, Hohwy M, Hong M, Griffin R (2000) 2D and 3D 15N–13C-13C chemical shift correlation spectroscopy of solids: assignment of MAS spectra of peptides. J Am Chem Soc 122:10979–10990

    Article  Google Scholar 

  • Siemer AB, Ritter C, Steinmetz MO, Ernst M, Riek R, Meier BH (2006) 13C, 15N resonance assignment of parts of the HET-s prion protein in its amyloid form. J Biomol NMR 34:75–87

    Article  Google Scholar 

  • States DJ, Haberkorn RA, Ruben DJ (1982) A two-dimensional nuclear overhauser experiment with pure absorption phase in four quadrants. J Magn Reson 48:286–292

    Google Scholar 

  • Sun BQ, Rienstra CM, Costa PR, Williamson JR, Griffin RG (1997) 3D 15N–13C–13C chemical shift correlation spectroscopy in rotating solids. J Am Chem Soc 119:8540–8546

    Article  Google Scholar 

  • van Rossum BJ, Castellani F, Pauli J, Rehbein K, Hollander J, de Groot HJM, Oschkinat H (2003) Assignment of amide proton signals by combined evaluation of HN, NN and HNCA MAS-NMR correlation spectra. J Biomol NMR 25:217–223

    Article  Google Scholar 

  • Veshtort M, Griffin RG (2006) SPINEVOLUTION: a powerful tool for the simulation of solid and liquid state NMR experiments. J Magn Reson 178:248–282

    Article  ADS  Google Scholar 

  • Wall M (1996) GAlib: A C++ Library of genetic algorithm components, version 2.4.7. http://lancet.mit.edu/ga/

  • Wu XL, Freeman R (1989) Darwin’s ideas applied to magnetic resonance. The marriage broker. J Magn Reson 85:414–420

    Google Scholar 

  • Xu P, Wu XL, Freeman R (1992) User-friendly selective pulses. J Magn Reson 99:308–322

    Google Scholar 

  • Zhou DH, Shah G, Cormos M, Franks WT, Mullen C, Sandoz D, Rienstra CM (2007a) Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning. J Am Chem Soc 129:11791–11801

    Article  Google Scholar 

  • Zhou DH, Shea JJ, Nieuwkoop AJ, Franks WT, Wylie BJ, Mullen C, Sandoz D, Rienstra CM (2007b) Solid-state protein-structure determination with proton-detected triple-resonance 3D magic-angle-spinning NMR spectroscopy. Angew Chem Int Ed 46:8380–8383

    Article  Google Scholar 

Download references

Acknowledgments

This study has been funded in part by a grant from the Deutsche Forschungsgemeinschaft (GO474/6-1). The FLI is a member of the Science Association ‘Gottfried Wilhelm Leibniz’ (WGL) and is financially supported by the Federal Government of Germany and the State of Thuringia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramadurai Ramachandran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF 434 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herbst, C., Herbst, J., Carella, M. et al. Broadband 15N–13C dipolar recoupling via symmetry-based RF pulse schemes at high MAS frequencies. J Biomol NMR 47, 7–17 (2010). https://doi.org/10.1007/s10858-010-9406-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-010-9406-z

Keywords

Navigation