Skip to main content

Advertisement

Log in

Magic-angle spinning solid-state NMR of a 144 kDa membrane protein complex: E. coli cytochrome bo3 oxidase

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Recent progress in magic-angle spinning (MAS) solid-state NMR (SSNMR) has enabled multidimensional studies of large, macroscopically unoriented membrane proteins with associated lipids, without the requirement of solubility that limits other structural techniques. Here we present initial sample preparation and SSNMR studies of a 144 kDa integral membrane protein, E. coli cytochrome bo3 oxidase. The optimized protocol for expression and purification yields ∼5 mg of the enzymatically active, uniformly 13C,15N-enriched membrane protein complex from each liter of growth medium. The preparation retains endogenous lipids and yields spectra of high sensitivity and resolution, consistent with a folded, homogenous protein. Line widths of isolated signals are less than 0.5 ppm, with a large number of individual resonances resolved in the 2D and 3D spectra. The 13C chemical shifts, assigned by amino acid type, are consistent with the secondary structure previously observed by diffraction methods. Although the structure is predominantly helical, the percentage of non-helical signals varies among residue types; these percentages agree well between the NMR and diffraction data. Samples show minimal evidence of degradation after several weeks of NMR data acquisition. Use of a triple resonance scroll resonator probe further improves sample stability and enables higher power decoupling, higher duty cycles and more advanced 3D experiments to be performed. These initial results in cytochrome bo3 oxidase demonstrate that multidimensional MAS SSNMR techniques have sufficient sensitivity and resolution to interrogate selected parts of a very large uniformly 13C,15N-labeled membrane protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramson J., Riistama S., Larsson G., Jasaitis A., Svensson-Ek M., Laakkonen L., Puustinen A., Iwata S., Wikstrom M., (2000). Nat. Struct. Biol. 7:910–917

    Article  Google Scholar 

  • Anderson C.A.F., Palmer A.G., Brunak S., Rost B., (2002). Structure 10:175–184

    Article  Google Scholar 

  • Baldus M., Petkova A.T., Herzfeld J.H., Griffin R.G., (1998). Mol. Phys. 95:1197–1207

    Article  ADS  Google Scholar 

  • Bennett A.E., Rienstra C.M., Auger M., Lakshmi K.V., Griffin R.G., (1995). J. Chem. Phys. 103:6951–6958

    Article  ADS  Google Scholar 

  • Caffrey M., (2003). J. Struct. Biol. 142:108–132

    Article  Google Scholar 

  • Chen P.S., Toribara T.Y., Warner H. (1956). Anal. Chem. 28:1756–1758

    Article  Google Scholar 

  • Cole H.B.R., Sparks S.W., Torchia D.A., (1988). Proc. Natl. Acad. Sci. 85:6362–6365

    Article  ADS  Google Scholar 

  • Das T.K., Tomson F.L., Gennis R.B., Gordon M., Rousseau D.L. (2001). Biophys. J. 80:2039–2045

    Google Scholar 

  • Distler A.M., Allison J., Hiser C., Qin L., Hilmi Y., Ferguson-Miller S. (2004). Eur. J. Mass Spectrom. 10:295–308

    Article  Google Scholar 

  • Egorova-Zachernyuk T.A., Hollander J., Fraser N., Gast P., Hoff A.J., Cogdell R., de Groot H.J.M., Baldus M. (2001). J. Biomol. NMR 19:243–253

    Article  Google Scholar 

  • Fahem S., Bowie J.U. (2002). J. Mol. Biol. 316:1–6

    Article  Google Scholar 

  • Franks W.T., Zhou D.H., Wylie B.J., Money B.G., Graesser D.T., Frericks H.L., Sahota G., Rienstra C.M. (2005). J. Am. Chem. Soc. 127:12291–12305

    Article  Google Scholar 

  • Garciahorsman J.A., Barquera B., Rumbley J., Ma J.X., Gennis R.B. (1994). J. Bacteriol. 176:5587–5600

    Google Scholar 

  • Goddard, T.D. and Kneller, D.G. (2004) Sparky 3.110 University of California, San Francisco

  • Harbison G.S., Herzfeld J., Griffin R.G. (1983). Biochemistry 22:1–5

    Article  Google Scholar 

  • Hatcher M.E., Hu J.G.G., Belenky M., Verdegem P., Lugtenburg J., Griffin R.G., Herzfeld J. (2002). Biophys. J. 82:1017–1029

    Article  Google Scholar 

  • Hellwig P., Yano T., Ohnishi T., Gennis R.B. (2002). Biochemistry 41:10675–10679

    Article  Google Scholar 

  • Hiller M., Krabben L., Vinothkumar K.R., Castellani F., van Rossum B.J., Kuhlbrandt W., Oschkinat H. (2005). Chem. Bio. Chem. 6:1679–1684

    Google Scholar 

  • Hohwy M., Rienstra C.M., Jaroniec C.P., Griffin R.G. (1999). J. Chem. Phys. 110:7983–7992

    Article  ADS  Google Scholar 

  • Hong M. (1999). J. Biomol. NMR 15:1–14

    Article  Google Scholar 

  • Hong M., Jakes K. (1999). J. Biomol. NMR 14:71–74

    Article  Google Scholar 

  • Hu J.G., Sun B.Q., Griffin R.G., Herzfeld J. (1995). Biophys. J. 68:A332

    Google Scholar 

  • Igumenova T.I., McDermott A.E., Zilm K.W., Martin R.W., Paulson E.K., Wand A.J. (2004a). J. Am. Chem. Soc. 126:6720–6727

    Article  Google Scholar 

  • Igumenova T.I., Wand A.J., McDermott A.E. (2004b). J. Am. Chem. Soc. 126:5323–5331

    Article  Google Scholar 

  • Jaroniec C.P., Lansing J.C., Tounge B.A., Belenky M., Herzfeld J., Griffin R.G. (2001). J. Am. Chem. Soc. 123:12929–12930

    Article  Google Scholar 

  • Krabben L., van Rossum B.J., Castellani F., Bocharov E., Schulga A.A., Arseniev A.S., Weise C., Hucho F., Oschkinat H. (2004). FEBS Lett. 564:319–324

    Article  Google Scholar 

  • Lemaster D.M., Cronan J.E. (1982). J. Biol. Chem. 257:1224–1230

    Google Scholar 

  • Li C., Mo Y., Hu J., Chekmenev E.Y., Tian C., Gao F.P., Fu R., Gor’kov P.L., Brey W.W., Cross T.A. (2006a). J. Mag. Res. 180:51–57

    ADS  Google Scholar 

  • Li Y., Wylie B.J., Rienstra C.M. (2006b). J. Mag. Res. 179:206–216

    Article  ADS  Google Scholar 

  • Lorch M., Fahem S., Kaiser C., Weber I., Mason A.J., Bowie J.U., Glaubitz C. (2005). Chem. Bio. Chem. 6:1693–1700

    Google Scholar 

  • Luo W.B., Yao X.L., Hong M. (2005). J. Am. Chem. Soc., 127:6402–6408

    Article  Google Scholar 

  • Ma J.X., Puustinen A., Wikstrom M., Gennis R.B. (1998). Biochemistry 37:11806–11811

    Article  Google Scholar 

  • Martin R.W., Zilm K.W. (2003). J. Magn. Reson. 165:162–174

    Article  ADS  Google Scholar 

  • Marulanda D., Tasayco M.L., Cataldi M., Arriaran V., Polenova T. (2005). J. Phys. Chem. B 109:18135–18145

    Article  Google Scholar 

  • Meier B.H. (1992). Chem. Phys. Lett. 188:201–207

    Article  ADS  Google Scholar 

  • Miroux B., Walker J.E. (1996). J. Mol. Biol. 260:289–298

    Article  Google Scholar 

  • Morcombe C.R., Gaponenko V., Byrd R.A., Zilm K.W. (2005). J. Am. Chem. Soc. 127:397–404

    Article  Google Scholar 

  • Oldfield E. (2002). Ann. Rev. Phys. Chem. 53:349–378

    Article  Google Scholar 

  • Pauli J., Baldus M., van Rossum B., de Groot H., Oschkinat H. (2001). Chem. Bio. Chem. 2:272–281

    Google Scholar 

  • Pautsch A., Vogt J., Model K., Siebold C., Schulz G.E. (1999). Proteins 34:167–172

    Article  Google Scholar 

  • Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. (2004). J. Comput. Chem. 25:1605–1612

    Article  Google Scholar 

  • Puustinen A., Morgan J.E., Verkhovsky M., Thomas J.W., Gennis R.B., Wikstrom M. (1992). Biochemistry 31:10363–10369

    Article  Google Scholar 

  • Rumbley J.N., Nickels E.F., Gennis R.B. (1997). Biochim. Biophys. Acta 1340:131–142

    Google Scholar 

  • Schaefer J., Stejskal E.O. (1979). J. Magn. Reson. 34:443–447

    Google Scholar 

  • Seavey B.R., Farr E.A., Westler W.M., Markley J.L. (1991). J. Biomol. NMR 1:217–236

    Article  Google Scholar 

  • Sorgen P.L., Cahill S.M., Krueger-Koplin R.D., Krueger-Koplin S.T., Schenck C.C., Girvin M.E. (2002). Biochemistry 41:31–41

    Article  Google Scholar 

  • Stringer J.A., Bronnimann C.E., Mullen C.G., Zhou D.H., Stellfox S.A., Li Y., Williams E.H., Rienstra C.M. (2005). J. Magn. Reson. 173:40–48

    Article  ADS  Google Scholar 

  • Takegoshi K., Mizokami J., Terao T. (2001). Chem. Phys. Lett. 341:540–544

    Article  ADS  Google Scholar 

  • Thomas J.W., Puustinen A., Alben J.O., Gennis R.B., Wikstrom M. (1993). Biochemistry 32:10923–10928

    Article  Google Scholar 

  • Uchida T., Mogi T., Nakamura H., Kitagawa T. (2004). J. Biol. Chem. 279:53613–53620

    Article  Google Scholar 

  • van Gammeren A.J., Hulsbergen F.B., Hollander J.G., de Groot H.J.M. (2005). J. Biomol. NMR 31:279–293

    Article  Google Scholar 

  • Vanliemt W.B.S., Boender G.J., Gast P., Hoff A.J., Lugtenburg J., Degroot H.J.M. (1995). Biochemistry 34:10229–10236

    Article  Google Scholar 

  • Vinogradova O., Sonnichsen F., Sanders C.R. (1998). J. Biomol. NMR 11:381–386

    Article  Google Scholar 

  • Wishart D.S., Sykes B.D. (1994). J. Biomol. NMR 4:171–180

    Article  Google Scholar 

  • Zaslavsky D., Gennis R.B. (2000). Biochim. Biophys. Acta 1458:164–179

    Article  Google Scholar 

  • Zhang J., Osborne J.P., Gennis R.B., Wang X.T. (2004). Arch. Biochem. Biophys. 421:186–191

    Article  Google Scholar 

  • Zhou D.H., Kloepper K.D., Winter K.A., Rienstra C.M. (2006). J. Biomol. NMR 34:245–257

    Article  Google Scholar 

Download references

Acknowledgments

The funding for this work was provided by the University of Illinois (startup funds to C.M.R.), the NIH & NIGMS Roadmap Initiative (GM075937-01), and an Ullyot Fellowship to H.F. The authors would like to thank Dr. Paul Molitor (VOICE NMR Facility of School of Chemical Science, University of Illinois) for technical support and Drs. John Stringer and Charles Mullen (Varian, Inc.) for assistance with installation of the 750 MHz scroll resonator probe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad M. Rienstra.

Additional information

Heather L. Frericks and Lai Lai Yap contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frericks, H.L., Zhou, D.H., Yap, L.L. et al. Magic-angle spinning solid-state NMR of a 144 kDa membrane protein complex: E. coli cytochrome bo3 oxidase. J Biomol NMR 36, 55–71 (2006). https://doi.org/10.1007/s10858-006-9070-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-006-9070-5

Keywords

Navigation