Skip to main content
Log in

Design of high-power, broadband 180° pulses and mixing sequences for fast MAS solid state chemical shift correlation NMR spectroscopy

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

An approach for the design of high-power, broadband 180° pulses and mixing sequences for generating dipolar and scalar coupling mediated 13C–13C chemical shift correlation spectra of isotopically labelled biological systems at fast magic-angle spinning frequencies without 1H decoupling during mixing is presented. Considering RF field strengths in the range of 100–120 kHz, as typically available in MAS probes employed at high spinning speeds, and limited B 1 field inhomogeneities, the Fourier coefficients defining the phase modulation profile of the RF pulses were optimised numerically to obtain broadband inversion and refocussing pulses and mixing sequences. Experimental measurements were carried out to assess the performance characteristics of the mixing sequences reported here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bak M, Nielsen NC (1997) REPULSION, a novel approach to efficient powder averaging in solid state NMR. J Magn Reson 125:132–139

    Article  ADS  Google Scholar 

  • Baldus M, Meier BH (1996) Total correlation spectroscopy in the solid state. The use of scalar couplings to determine the through-bond connectivity. J Magn Reson A 121:65–69

    Article  Google Scholar 

  • Bayro MJ, Ramachandran R, Caporini MA, Eddy MT, Griffin RG (2008) Radio frequency-driven recoupling at high magic-angle spinning frequencies: homonuclear recoupling sans heteronuclear decoupling. J Chem Phys 128:052321

    Article  ADS  Google Scholar 

  • Bennett AE, Ok JH, Griffin RG, Vega S (1992) Chemical shift correlation spectroscopy in rotating solids: radio frequency-driven dipolar recoupling and longitudinal exchange. J Chem Phys 96:8624–8627

    Article  ADS  Google Scholar 

  • Bennett AE, Rienstra CM, Griffiths JM, Zhen W, Lansbury PT, Griffin RG (1998) Homonuclear radio frequency-driven recoupling in rotating solids. J Chem Phys 108:9463–9479

    Article  ADS  Google Scholar 

  • Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102

    Article  ADS  Google Scholar 

  • Cheng VB, Suzukawa HH, Wolfsberg M (1973) Investigations of a nonrandom numerical method for multidimensional integration. J Chem Phys 59:3992–3999

    Article  ADS  MathSciNet  Google Scholar 

  • Detken A, Hardy EH, Ernst M, Kainosho M, Kawakami T, Aimoto S, Meier BH (2001) Methods for sequential resonance assignment in solid, uniformly 13C, 15N labelled peptides: quantification and application to antamanide. J Biomol NMR 20:203–221

    Article  Google Scholar 

  • De Paepe G, Bayro MJ, Lewandowski J, Griffin RG (2005) Broadband homonuclear correlation spectroscopy at high magnetic fields and MAS frequencies. J Am Chem Soc 128:1776–1777

    Article  Google Scholar 

  • Ernst M, Detken A, Bockmann A, Meier BH (2003) NMR spectra of a microcrystalline protein at 30 kHz MAS. J Am Chem Soc 125:15807–15810

    Article  Google Scholar 

  • Forrest S (1993) Genetic algorithms—principles of natural-selection applied to computation. Science 261:872–878

    Article  ADS  Google Scholar 

  • Freeman R, Wu XL (1987) Design of magnetic resonance experiments by genetic evolution. J Magn Reson 75:184–189

    Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley publishing company, Massachusetts

    MATH  Google Scholar 

  • Goldbourt A, Gross BJ, Day LA, McDermott AE (2007) Filamentous phage studied by magic-angle spinning NMR: resonance assignment and secondary structure of the coat protein in Pf1. J Am Chem Soc 129:2338–2344

    Article  Google Scholar 

  • Gullion T, Baker DB, Conradi MS (1990) New, compensated Carr-Purcell sequences. J Magn Reson 89:479–484

    Google Scholar 

  • Hardy EH, Detken A, Meier BH (2003) Fast-MAS total through-bond correlation spectroscopy using adiabatic pulses. J Magn Reson 165:208–218

    Article  ADS  Google Scholar 

  • Haupt RL, Haupt SE (2004) Practical genetic algorithms. Wiley-Interscience, Hoboken, New Jersey

    MATH  Google Scholar 

  • Heindrichs ASD, Geen H, Giordani C, Titman JJ (2001) Improved scalar shift correlation NMR spectroscopy in solids. Chem Phys Lett 335:89–96

    Article  ADS  Google Scholar 

  • Herbst C, Riedel K, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2007) 13C–13C chemical shift correlation in rotating solids without 1H decoupling during mixing: an assessment of amplitude and phase-modulated adiabatic RF pulse schemes. Chem Phys Chem 8:1770–1773

    Google Scholar 

  • Hughes CE, Luca S, Baldus M (2004) Radio-frequency driven polarization transfer without heteronuclear decoupling in rotating solids. Chem Phys Lett 385:435–440

    Article  ADS  Google Scholar 

  • Ishii Y (2001) 13C–13C dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic resonance: applications to distance measurements, spectral assignments, and high-throughput secondary-structure determination. J Chem Phys 114:8473–8483

    Article  ADS  Google Scholar 

  • Jaroniec CP, MacPhee CE, Astrof NS, Dobson CM, Griffin RG (2002) Molecular conformation of a peptide fragment of transthyretin in an amyloid fibril. Proc Natl Acad Sci USA 99:16748–16753

    Article  ADS  Google Scholar 

  • Judson R (1997) Genetic algorithms and their use in chemistry. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 10. VCH Publishers, New York, pp 1–73

    Google Scholar 

  • Kirschstein A, Herbst C, Riedel K, Carella M, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2008a) Broadband homonuclear TOCSY with amplitude and phase-modulated RF mixing schemes. J Biomol NMR 40:227–237

    Article  Google Scholar 

  • Kirschstein A, Herbst C, Riedel K, Carella M, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2008b) Heteronuclear J cross-polarisation in liquids using amplitude and phase modulated mixing sequences. J Biomol NMR 40:277–283

    Article  Google Scholar 

  • Kobzar K, Skinner TE, Khaneja N, Glaser SJ, Luy B (2004) Exploring the limits of broadband excitation and inversion pulses. J Magn Reson 170:236–243

    Article  ADS  Google Scholar 

  • Krabben L, van Rossum BJ, Castellani F, Bocharov E, Schulga AA, Arseniev AS, Weise C, Hucho F, Oschkinat H (2004) Towards structure determination of neurotoxin II bound to nicotinic acetylcholine receptor: a solid state NMR approach. FEBS Lett 564:319–324

    Article  Google Scholar 

  • Leppert J, Heise B, Ohlenschläger O, Görlach M, Ramachandran R (2003) Broadband RFDR with adiabatic inversion pulses. J Biomol NMR 26:13–24

    Article  Google Scholar 

  • Leppert J, Urbinati CR, Häfner S, Ohlenschläger O, Swanson MS, Görlach M, Ramachandran R (2004) Identification of NH…N hydrogen bonds by magic angle spinning solid state NMR in a double-stranded RNA associated with myotonic dystrophy. Nucleic Acids Res 32:1177–1183

    Article  Google Scholar 

  • Levitt MH (2002) Symmetry-based pulse sequences in magic-angle spinning solid-state NMR. In: Grant DM, Harris RK (eds) Encyclopedia of nuclear magnetic resonance. John Wiley, Chichester, New York

    Google Scholar 

  • Luca S, White JF, Sohal Ak, Filippov DV, van Boom JH, Grisshammer R, Baldus M (2003) The conformation of neurotinsin bound to its G protein-coupled receptor. Proc Natl Acad Sci USA 100:10706–10711

    Article  ADS  Google Scholar 

  • Marin-Montesinos I, Brouwer DH, Antonioli G, Lai WC, Brinkmann A, Levitt MH (2005) Heteronuclear decoupling interference during symmetry-based homonuclear recoupling in solid-state NMR. J Magn Reson 177:307–317

    Article  ADS  Google Scholar 

  • Mou Y, Chao JCH, Chan JCC (2006) Efficient spin–spin scalar coupling mediated 13C homonuclear polarization in biological solids without proton decoupling. Solid State Nucl Magn Reson 29:278–282

    Article  Google Scholar 

  • Rienstra CM, Tucker-Kellog L, Jaroniec CP, Hohwy M, Reif B, McMahon MT, Tidor B, Lozano-Perez T, Griffin RG (2002) De novo determination of peptide structure with solid-state magic-angle spinning NMR spectroscopy. Proc Natl Acad Sci USA 99:10260–10265

    Article  ADS  Google Scholar 

  • Riedel K, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2005) Characterisation of hydrogen bonding networks in RNA via magic angle spinning solid state NMR spectroscopy. J Biomol NMR 31:331–336

    Article  Google Scholar 

  • Riedel K, Herbst C, Häfner S, Leppert J, Ohlenschläger O, Swanson MS, Görlach M, Ramachandran R (2006) Constraints on the structure of (CUG)97 RNA from magic-angle-spinning solid-state NMR spectroscopy. Angew Chem Int Ed 45:5620–5623

    Article  Google Scholar 

  • Riedel K, Herbst C, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2007) Broadband homonuclear chemical shift correlation at high MAS frequencies: a study of tanh/tan adiabatic RF pulse schemes without 1H decoupling during mixing. J Biomol NMR 37:277–286

    Article  Google Scholar 

  • Tycko R (2003) Application of solid state NMR to the structural characterization of amyloid fibrils: methods and results. Prog Nucl Magn Reson Spectrosc 42:53–68

    Article  Google Scholar 

  • Veshtort M, Griffin RG (2006) SPINEVOLUTION: a powerful tool for the simulation of solid and liquid state NMR experiments. J Magn Reson 178:248–282

    Article  ADS  Google Scholar 

  • Wall M (1996) GAlib: a C++ Library of genetic algorithm components, version 2.4.7

  • Wu XL, Freeman R (1989) Darwin’s ideas applied to magnetic resonance. The marriage broker. J Magn Reson 85:414–420

    Google Scholar 

  • Xu P, Wu XL, Freeman R (1992) User-friendly selective pulses. J Magn Reson 99:308–322

    Google Scholar 

  • Zech SG, Wand AJ, McDermott AE (2005) Protein structure determination by high-resolution solid state NMR spectroscopy: application to microcrystalline ubiquitin. J Am Chem Soc 127:8618–8626

    Article  Google Scholar 

  • Zhou DH, Shea JJ, Nieuwkoop AJ, Franks WT, Wylie BJ, Mullen C, Sandoz D, Rienstra CM (2007) Solid-state protein-structure determination with proton-detected triple-resonance 3D magic-angle-spinning NMR spectroscopy. Angew Chem Int Ed 46:8380–8383

    Article  Google Scholar 

Download references

Acknowledgments

This study has been funded in part by a grant from the Deutsche Forschungsgemeinschaft (GO474/6-1). The FLI is a member of the Science Association “Gottfried Wilhelm Leibniz” (WGL) and is financially supported by the Federal Government of Germany and the State of Thuringia. We would like to thank the referees for their useful comments on the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramadurai Ramachandran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herbst, C., Herbst, J., Kirschstein, A. et al. Design of high-power, broadband 180° pulses and mixing sequences for fast MAS solid state chemical shift correlation NMR spectroscopy. J Biomol NMR 43, 51–61 (2009). https://doi.org/10.1007/s10858-008-9292-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-008-9292-9

Keywords

Navigation