Skip to main content
Log in

Prospects for lanthanides in structural biology by NMR

  • Perspective
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The advent of different lanthanide-binding reagents has made site-specific labelling of proteins with paramagnetic lanthanides a viable proposition. This brings many powerful techniques originally established and demonstrated for paramagnetic metalloproteins into the mainstream of structural biology. The promise is that, by exploiting the long-range effects of paramagnetism, lanthanide labelling will allow the study of larger proteins and protein–ligand complexes with greater ease and accuracy than hitherto possible. In particular, lanthanide-induced pseudocontact shifts (PCS) provide powerful restraints and 3D structure determination using PCS as the only source of experimental restraints will probably be possible with data obtained from samples with different lanthanide-tagging sites. Cell-free protein synthesis is positioned to play an important role in this strategy, as an inexpensive source of selectively labelled protein samples and for easy site-specific incorporation of unnatural lanthanide-binding amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allegrozzi M, Bertini I, Janik MBL, Lee YM, Liu G, Luchinat C (2000) Lanthanide-induced pseudocontact shifts for solution structure refinements of macromolecules in shells up to 40 Å from the metal ion. J Am Chem Soc 122:4154–4161

    Article  Google Scholar 

  • Apponyi M, Ozawa K, Dixon NE, Otting G (2008) Cell-free protein synthesis for analysis by NMR spectroscopy. In: Kobe B, Guss M, Huber T (eds) Methods in molecular biology 426, structural proteomics: high-throughput methods. Humana Press, Totowa, pp 257–268

    Google Scholar 

  • Barry CD, North ACT, Glasel JA, Williams RJP, Xavier AV (1971) Quantitative determination of mononucleotide conformations in solution using lanthanide ion shift and broadening NMR probes. Nature 232:236–245

    Article  ADS  Google Scholar 

  • Bellin MF (2006) MR contrast agents, the old and the new. Eur J Radiol 60:314–323

    Article  Google Scholar 

  • Bertini I, Janik MBL, Lee YM, Luchinat C, Rosato A (2001a) Magnetic susceptibility tensor anisotropies for a lanthanide ion series in a fixed protein matrix. J Am Chem Soc 123:4181–4188

    Article  Google Scholar 

  • Bertini I, Kowalewski J, Luchinat C, Parigi G (2001b) Cross correlation between the dipole-dipole interaction and the Curie spin relaxation: the effect of anisotropic magnetic susceptibility. J Magn Reson 152:103–108

    Article  ADS  Google Scholar 

  • Bertini I, Luchinat C, Parigi G (2002a) Paramagnetic constraints: an aid for quick solution structure determination of paramagnetic metalloproteins. Concepts Magn Reson 14:259–286

    Article  Google Scholar 

  • Bertini I, Luchinat C, Parigi G (2002b) Magnetic susceptibility in paramagnetic NMR. Prog NMR Spectrosc 40:249–273

    Article  Google Scholar 

  • Biekofsky RR, Muskett FW, Schmidt JM, Martin SR, Browne JP, Bayley PM, Feeney J (1999) NMR approaches for monitoring domain orientations in calcium-binding proteins in solution using partial replacement of Ca2+ by Tb3+. FEBS Lett 460:519–526

    Article  Google Scholar 

  • Bleaney B (1972) Nuclear magnetic resonance shifts in solution due to lanthanide ions. J Magn Reson 8:91–100

    Google Scholar 

  • Crowley PB, Ubbink M (2003) Close encounters of the transient kind: protein interactions in the photosynthetic redox chain investigated by NMR spectroscopy. Acc Chem Res 36:723–730

    Article  Google Scholar 

  • Dvoretsky A, Gaponenko V, Rosevear PR (2002) Derivation of structural restraints using a thiol-reactive chelator. FEBS Lett 528:189–192

    Article  Google Scholar 

  • Felitsky DJ, Lietzow MA, Dyson HJ, Wright PE (2008) Modeling transient collapsed states of an unfolded protein to provide insights into early folding events. Proc Natl Acad Sci 105:6278–6283

    Article  ADS  Google Scholar 

  • Fiaux J, Bertelsen EB, Horwich AL, Wüthrich K (2002) NMR analysis of a 900 K GroEL GroES complex. Nature 418:207–211

    Article  ADS  Google Scholar 

  • Ghose R, Prestegard JH (1997) Electron spin-nuclear spin cross-correlation effects on multiplet splittings in paramagnetic proteins. J Magn Reson 128:138–143

    Article  ADS  Google Scholar 

  • Guéron M (1975) Nuclear relaxation in macromolecules by paramagnetic ions—novel mechanism. J Magn Reson 19:58–66

    Google Scholar 

  • Guignard L, Ozawa K, Pursglove SE, Otting G, Dixon NE (2002) NMR analysis of in vitro-synthesized proteins without purification: a high-throughput approach. FEBS Lett 524:159–162

    Article  Google Scholar 

  • Haberz P, Rodriguez-Castañeda F, Junker J, Becker S, Leonov A, Griesinger C (2006) Two new chiral EDTA-based metal chelates for weak alignment of proteins in solution. Org Lett 8:1275–1278

    Article  Google Scholar 

  • Ikegami T, Verdier L, Sakhaii P, Grimme S, Pescatore B, Fiebig KM, Griesinger C (2004) Novel techniques for weak alignment of proteins in solution using chemical tags coordinating lanthanide ions. J Biomol NMR 29:339–349

    Article  Google Scholar 

  • Iwahara J, Clore GM (2006) Detecting transient intermediates in macromolecular binding by paramagnetic NMR. Nature 440:1227–1230

    Article  ADS  Google Scholar 

  • John M, Otting G (2007) Strategies for measurements of pseudocontact shifts in protein NMR spectroscopy. ChemPhysChem 8:2309–2313

    Article  Google Scholar 

  • John M, Park AY, Pintacuda G, Dixon NE, Otting G (2005) Weak alignment of paramagnetic proteins warrants correction for residual CSA effects in measurements of pseudocontact shifts. J Am Chem Soc 127:17190–17191

    Article  Google Scholar 

  • John M, Pintacuda G, Park AY, Dixon NE, Otting G (2006) Structure determination of protein–ligand complexes by transferred paramagnetic shifts. J Am Chem Soc 128:12910–12916

    Article  Google Scholar 

  • John M, Schmitz C, Park AY, Dixon NE, Huber T, Otting G (2007) Sequence- and stereospecific assignment of methyl groups using paramagnetic lanthanides. J Am Chem Soc 129:13749–13757

    Article  Google Scholar 

  • Keizers PH, Desreux JF, Overhand M, Ubbink M (2007) Increased paramagnetic effect of a lanthanide protein probe by two-point attachment. J Am Chem Soc 129:9292–9293

    Article  Google Scholar 

  • Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graphics 14:51–55

    Article  Google Scholar 

  • Lee L, Sykes BD (1983) Use of lanthanide-induced nuclear magnetic resonance shifts for determination of protein structure in solution: EF calcium binding site of carp parvalbumin. Biochemistry 22:4366–4373

    Article  Google Scholar 

  • Leonov A, Voigt B, Rodriguez-Castañeda F, Sakhaii P, Griesinger C (2005) Convenient synthesis of multifunctional EDTA-based chiral metal chelates substituted with an S-mesylcysteine. Chemistry 11:3342–3348

    Article  Google Scholar 

  • Ma C, Opella SJ (2000) Lanthanide ions bind specifically to an added “EF-hand” and orient a membrane protein in micelles for solution NMR spectroscopy. J Magn Reson 146:381–384

    Article  ADS  Google Scholar 

  • Martin LJ, Hähnke MJ, Nitz M, Wöhnert J, Silvaggi NR, Allen KN, Schwalbe H, Imperiali B (2007) Double-lanthanide-binding tags: design, photophysical properties, and NMR applications. J Am Chem Soc 129:7106–7113

    Article  Google Scholar 

  • Ozawa K, Headlam MJ, Schaeffer PM, Henderson BR, Dixon NE, Otting G (2004) Optimization of an Escherichia coli system for cell-free synthesis of selectively 15N-labelled proteins for rapid analysis by NMR spectroscopy. Eur J Biochem 271:4084–4093

    Article  Google Scholar 

  • Ozawa K, Headlam MJ, Mouradov D, Beck JL, Rogers KJ, Dean RT, Huber T, Otting G, Dixon NE (2005) Translational incorporation of L-3, 4-dihydroxyphenylalanine (DOPA) into proteins. FEBS J 272:3162–3171

    Article  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci 94:12366–12371

    Article  ADS  Google Scholar 

  • Pintacuda G, Keniry MA, Huber T, Park AY, Dixon NE, Otting G (2004a) Fast structure-based assignment of 15N-HSQC spectra of selectively 15N-labeled paramagnetic proteins. J Am Chem Soc 126:2963–2970

    Article  Google Scholar 

  • Pintacuda G, Kaikkonen A, Otting G (2004b) Modulation of the distance dependence of paramagnetic relaxation enhancements by CSA × DSA cross-correlation. J Magn Reson 171:233–243

    Article  ADS  Google Scholar 

  • Pintacuda G, Park AY, Keniry MA, Dixon NE, Otting G (2006) Lanthanide labeling offers fast NMR approach to 3D structure determinations of protein–protein complexes. J Am Chem Soc 128:3696–3702

    Article  Google Scholar 

  • Pintacuda G, John M, Su XC, Otting G (2007) NMR structure determination of protein–ligand complexes by lanthanide labelling. Acc Chem Res 40:206–212

    Article  Google Scholar 

  • Prudêncio M, Rohovec J, Peters JA, Tocheva E, Boulanger MJ, Murphy MEP, Hupkes HK, Kosters W, Impagliazzo A, Ubbink M (2004) A caged lanthanide complex as a paramagnetic shift agent for protein NMR. Chem Eur J 10:3252–3260

    Article  Google Scholar 

  • Rodriguez-Castañeda F, Haberz P, Leonov A, Griesinger C (2006) Paramagnetic tagging of diamagnetic proteins for solution NMR. Magn Reson Chem 44:S10–S16

    Article  Google Scholar 

  • Schmitz C, John M, Park AY, Dixon NE, Otting G, Pintacuda G, Huber T (2006) Efficient χ-tensor determination and NH assignment of paramagnetic proteins. J Biomol NMR 35:79–87

    Article  Google Scholar 

  • Schmitz C, Stanton-Cook MJ, Su XC, Otting G, Huber T (2008) Numbat: an interactive software tool for fitting Δχ-tensors to molecular coordinates using pseudocontact shifts. J Biomol NMR 41:179–189

    Article  Google Scholar 

  • Solomon I (1955) Relaxation processes in a system of 2 spins. Phys Rev 99:559–565

    Article  ADS  Google Scholar 

  • Su XC, Huber T, Dixon NE, Otting G (2006) Site-specific labelling of proteins with a lanthanide-binding tag. ChemBioChem 7:1469–1474

    Article  Google Scholar 

  • Su XC, McAndrew K, Huber T, Otting G (2008) Lanthanide-binding peptides for NMR measurements of residual dipolar couplings and paramagnetic effects from multiple angles. J Am Chem Soc 130:1681–1687

    Article  Google Scholar 

  • Tang C, Iwahara J, Clore GM (2006) Visualization of transient encounter complexes in protein–protein association. Nature 444:383–386

    Article  ADS  Google Scholar 

  • Tang C, Schwieters CD, Clore GM (2007) Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR. Nature 449:1078–1082

    Article  ADS  Google Scholar 

  • Tolman RR, Flanagan JM, Kennedy MA, Prestegard JH (1995) Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proc Natl Acad Sci 92:9279–9283

    Article  ADS  Google Scholar 

  • Vlasie MD, Comuzzi C, van den Nieuwendijk AM, Prudêncio M, Overhand M, Ubbink M (2007) Long-range-distance NMR effects in a protein labeled with a lanthanide-DOTA chelate. Chemistry 13:1715–1723

    Article  Google Scholar 

  • Volkov AN, Worrall JAR, Holtzmann E, Ubbink M (2006) Solution structure and dynamics of the complex between cytochrome c and cytochrome c peroxidase determined by paramagnetic NMR. Proc Natl Acad Sci 103:18945–18950

    Article  ADS  Google Scholar 

  • Wang L, Xie J, Schultz PG (2006) Expanding the genetic code. Annu Rev Biophys Biomol Struct 35:225–249

    Article  Google Scholar 

  • Wöhnert J, Franz KJ, Nitz M, Imperiali B, Schwalbe H (2003) Protein alignment by a coexpressed lanthanide-binding tag for the measurement of residual dipolar couplings. J Am Chem Soc 125:13338–13339

    Article  Google Scholar 

  • Wu PSC, Ozawa K, Jergic S, Su XC, Dixon NE, Otting G (2006) Amino acid type identification in 15N-HSQC spectra by combinatorial selective 15N-labelling. J Biomol NMR 34:13–21

    Article  Google Scholar 

  • Wu PSC, Ozawa K, Lim SP, Vasudevan S, Dixon NE, Otting G (2007) Cell-free transcription/translation from PCR amplified DNA for high-throughput NMR studies. Angew Chem Int Ed 46:3356–3358

    Article  Google Scholar 

  • Xie J, Liu W, Schultz PG (2007) A genetically encoded bidentate, metal-binding amino acid. Angew Chem Int Ed 46:9239–9242

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gottfried Otting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otting, G. Prospects for lanthanides in structural biology by NMR. J Biomol NMR 42, 1–9 (2008). https://doi.org/10.1007/s10858-008-9256-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-008-9256-0

Keywords

Navigation