Skip to main content
Log in

Theoretical framework for NMR residual dipolar couplings in unfolded proteins

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A theoretical framework for the prediction of nuclear magnetic resonance (NMR) residual dipolar couplings (RDCs) in unfolded proteins under weakly aligning conditions is presented. The unfolded polypeptide chain is modeled as a random flight chain while the alignment medium is represented by a set of regularly arranged obstacles. For the case of bicelles oriented perpendicular to the magnetic field, a closed-form analytical result is derived. With the obtained analytical expression the RDCs are readily accessible for any locus along the chain, for chains of differing length, and for varying bicelle concentrations. The two general features predicted by the model are (i) RDCs in the center segments of a polypeptide chain are larger than RDCs in the end segments, resulting in a bell-shaped sequential distribution of RDCs, and (ii) couplings are larger for shorter chains than for longer chains at a given bicelle concentration. Experimental data available from the literature confirm the first prediction of the model, providing a tool for recognizing fully unfolded polypeptide chains. With less certainty experimental data appear to support the second prediction as well. However, more systematic experimental studies are needed in order to validate or disprove the predictions of the model. The presented framework is an important step towards a solid theoretical foundation for the analysis of experimentally measured RDCs in unfolded proteins in the case of alignment media such as polyacrylamide gels and neutral bicelle systems which align biomacromolecules by a steric mechanism. Various improvements and generalizations are possible within the suggested approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. It is assumed that the internuclear vectors throughout the chain are on average oriented at the same angle αPQ with respect to the symmetry axis of the corresponding segment.

References

  • Ackerman MS, Shortle D (2002a) Biochemistry 41:3089–3095

    Article  Google Scholar 

  • Ackerman MS, Shortle D (2002b) Biochemistry 41:13791–13797

    Article  Google Scholar 

  • Alexandrescu AT, Kammerer RA (2003) Prot Sci 12:2132–2140

    Article  Google Scholar 

  • Alexandrescu AT, Abeygunawardana C, Shortle D (1994) Biochemistry 33:1063–1072

    Article  Google Scholar 

  • Almond A, Axelsen JB (2002) J Am Chem Soc 124:9986–9987

    Article  Google Scholar 

  • Azurmendi HF, Bush CA (2002) J Am Chem Soc 124:2426–2427

    Article  Google Scholar 

  • Bax A, Tjandra N (1997) J Biomol NMR 10:289–292

    Article  Google Scholar 

  • Bernado P, Blanchard L, Timmins P, Marion D, Ruigrok RW, Blackledge M (2005) Proc Natl Acad Sci USA 102:17002–17007

    Article  ADS  Google Scholar 

  • Bertoncini CW, Jung YS, Fernandez CO, Hoyer W, Griesinger C, Jovin TM, Zweckstetter M (2005a) Proc Natl Acad Sci USA 102:1430–1435

    Article  ADS  Google Scholar 

  • Bertoncini CW, Fernandez CO, Griesinger C, Jovin TM, Zweckstetter M (2005b) J Biol Chem 280:30649–30652

    Article  Google Scholar 

  • Binolfi A, Rasia RM, Bertoncini CW, Ceolin M, Zweckstetter M, Griesinger C, Jovin TM, Fernandez CO (2006) J Am Chem Soc 128:9893–9901

    Article  Google Scholar 

  • Blackledge M (2005) Prog Nucl Magn Reson Spectrosc 46:23–61

    Article  Google Scholar 

  • Bundi A, Wuthrich K (1979) Biopolymers 18:285–297

    Article  Google Scholar 

  • Chandrasekhar S (1943) Rev Mod Phys 15:1–89

    Article  MATH  ADS  Google Scholar 

  • Clore GM, Starich MR, Gronenborn AM (1998) J Am Chem Soc 120:10571–10572

    Article  Google Scholar 

  • Dames SA, Aregger R, Vajpai N, Bernado P, Blackledge M, Grzesiek S (2006) J Am Chem Soc 128:13508–13514

    Article  Google Scholar 

  • Ding K, Louis JM, Gronenborn AM (2004) J Mol Biol 335:1299–1307

    Article  Google Scholar 

  • Dyson HJ, Wright PE (2005) Nat Rev Mol Cell Biol 6:197–208

    Article  Google Scholar 

  • Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Oxford University Press, Oxford

    Google Scholar 

  • Fernandes MX, Bernado P, Pons M, Garcia de la Torre J (2001) J Am Chem Soc 123:12037–12047

    Article  Google Scholar 

  • Ferrarini A (2003) J Phys Chem B 107:7923–7931

    Article  Google Scholar 

  • Fieber W, Kristjansdottir S, Poulsen FM (2004) J Mol Biol 339:1191–1199

    Article  Google Scholar 

  • Fiebig KM, Schwalbe H, Buck M, Smith LJ, Dobson CM (1996) J Phys Chem 100:2661–2666

    Article  Google Scholar 

  • Fink AL (2005) Curr Opin Struct Biol 15:35–41

    Article  Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  • Fredriksson K, Louhivuori M, Permi P, Annila A (2004) J Am Chem Soc 126:12646–12650

    Article  Google Scholar 

  • Gebel EB, Ruan K, Tolman JR, Shortle D (2006) J Am Chem Soc 128:9310–9311

    Article  Google Scholar 

  • Gillespie JR, Shortle D (1997) J Mol Biol 268:158–169

    Article  Google Scholar 

  • Gillespie JR, Shortle D (1997) J Mol Biol 268:170–184

    Article  Google Scholar 

  • Hansen MR, Mueller L, Pardi A (1998) Nat Struct Biol 5:1065–1074

    Article  Google Scholar 

  • Jha AK, Colubri A, Freed KF, Sosnick TR (2005) Proc Natl Acad Sci USA 102:13099–13104

    Article  ADS  Google Scholar 

  • Klein-Seetharaman J, Oikawa M, Grimshaw SB, Wirmer J, Duchardt E, Ueda T, Imoto T, Smith LJ, Dobson CM, Schwalbe H (2002) Science 295:1719–17222

    Article  ADS  Google Scholar 

  • Kristjansdottir S, Lindorff-Larsen K, Fieber W, Dobson CM, Vendruscolo M, Poulsen FM (2005) J Mol Biol 347:1053–1062

    Article  Google Scholar 

  • Landau LD, Lifschitz EM (1958) Course of theoretical physics, vol V. Pergamon Press, Oxford

    Google Scholar 

  • Lord Rayleigh (1964) Lord Rayleigh collected papers, vol 6. Dover Publications, New York

  • Louhivuori M, Paakkonen K, Fredriksson K, Permi P, Lounila J, Annila A (2003) J Am Chem Soc 125:15647–15650

    Article  Google Scholar 

  • Louhivuori M, Fredriksson K, Paakkonen K, Permi P, Annila A (2004) J Biomol NMR 29:517–524

    Article  Google Scholar 

  • Mandelkow E-M, Mandelkow E (1998) Trends Cell Biol 8:425–427

    Article  Google Scholar 

  • Meier S, Guthe S, Kiefhaber T, Grzesiek S (2004) J Mol Biol 344:1051–1069

    Article  Google Scholar 

  • Meier S, Strohmeier M, Blackledge M, Grzesiek S (2007) J Am Chem Soc 129:754–755

    Article  Google Scholar 

  • Mohana-Borges R, Goto NK, Kroon GJ, Dyson HJ, Wright PE (2004) J Mol Biol 340:1131–1142

    Article  Google Scholar 

  • Mok YK, Kay CM, Kay LE, Forman-Kay J (1999) J Mol Biol 289:619–638

    Article  Google Scholar 

  • Neuhaus D, Williamson MP (2000) The nuclear overhauser effect in structural and conformational analysis, 2nd edn. Wiley-VCH

  • Ohnishi S, Shortle D (2003) Proteins 50:546–551

    Article  Google Scholar 

  • Ohnishi S, Lee AL, Edgell MH, Shortle D (2004) Biochemistry 43:4064–4070

    Article  Google Scholar 

  • Ohnishi S, Kamikubo H, Onitsuka M, Kataoka M, Shortle D (2006) J Am Chem Soc 128:16338–16344

    Article  Google Scholar 

  • Ruckert M, Otting G (2000) J Am Chem Soc 122:7793–7797

    Article  Google Scholar 

  • Sallum CO, Martel DM, Fournier RS, Matousek WM, Alexandrescu AT (2005) Biochemistry 44:6392–6403

    Article  Google Scholar 

  • Sanders CR II, Schwonek JP (1992) Biochemistry 31:8898–8905

    Article  Google Scholar 

  • Sass HJ, Musco G, Stahl SJ, Wingfield PT, Grzesiek S (2000) J Biomol NMR 18:303–309

    Article  Google Scholar 

  • Schlorb C, Mensch S, Richter C, Schwalbe H (2006) J Am Chem Soc 128:1802–1803

    Article  Google Scholar 

  • Schwalbe H, Fiebig KM, Buck M, Jones JA, Grimshaw SB, Spencer A, Glaser SJ, Smith LJ, Dobson CM (1997) Biochemistry 36:8977–8991

    Article  Google Scholar 

  • Schwarzinger S, Kroon GJ, Foss TR, Chung J, Wright PE, Dyson HJ (2001) J Am Chem Soc 123:2970–2978

    Article  Google Scholar 

  • Shortle D, Ackerman MS (2001) Science 293:487–489

    Article  Google Scholar 

  • Sibille N, Sillen A, Leroy A, Wieruszeski JM, Mulloy B, Landrieu I, Lippens G (2006) Biochemistry 45:12560–12572

    Article  Google Scholar 

  • Smith LJ, Bolin KA, Schwalbe H, MacArthur MW, Thornton JM, Dobson CM (1996) J Mol Biol 255:494–506

    Article  Google Scholar 

  • Tollinger M, Skrynnikov NR, Mulder FA, Forman-Kay JD, Kay LE (2001) J Am Chem Soc 123:11341–11352

    Article  Google Scholar 

  • Tycko R, Blanco FJ, Ishii Y (2000) J Am Chem Soc 122:9340–9341

    Article  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001) J Biol Chem 276:10737–10744

    Article  Google Scholar 

  • Vendruscolo M, Dobson CM (2005) Philos Trans A Math Phys Eng Sci 363:433–450

    Article  ADS  Google Scholar 

  • Wirmer J, Schlorb C, Schwalbe H (2005) Protein folding handbook, Part I, 1st edn. Wiley-VCH, Weinheim, pp 737–794

  • Zweckstetter M (2006) Eur Biophys J 35:170–180

    Article  Google Scholar 

  • Zweckstetter M, Bax A (2000) J Am Chem Soc 122:3791–3792

    Article  Google Scholar 

  • Zweckstetter M, Hummer G, Bax A (2004) Biophys J 86:3444–3460

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the European Commission within the Network of Excellence project EXCELL and by the EU project UPMAN. The Center for Biomoleuclar Magnetic Resonance is supported by the State of Hess. We thank Julia Wirmer for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Obolensky.

Additional information

O. I. Obolensky and Kai Schlepckow contributed equally to this work. O. I. Obolensky—On leave from: A.F. Ioffe Institute, St. Petersburg 194021, Russia. A. V. Solov’yov—On leave from: A.F. Ioffe Institute, St. Petersburg 194021, Russia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obolensky, O.I., Schlepckow, K., Schwalbe, H. et al. Theoretical framework for NMR residual dipolar couplings in unfolded proteins. J Biomol NMR 39, 1–16 (2007). https://doi.org/10.1007/s10858-007-9169-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-007-9169-3

Keywords

Navigation