Persidis A. Tissue engineering. Nat Biotechnol. 1999;17:508–10. https://doi.org/10.1038/8700.
CAS
Article
Google Scholar
Amini AR, Laurencin CT, Nukavarapu SP, Bone Tissue Engineering: Recent Advances and Challenges. 2013;40:363–408. https://doi.org/10.1615/CritRevBiomedEng.v40.i5.10.
Freedman BR, Mooney DJ. Biomaterials to mimic and heal connective tissues. Adv Mater. 2019;31:1–27. https://doi.org/10.1002/adma.201806695.
CAS
Article
Google Scholar
Trevisol TC, Langbehn RK, Battiston S, Immich APS. Nonwoven membranes for tissue engineering: an overview of cartilage, epithelium, and bone regeneration. J Biomater Sci Polym Ed. 2019;30:1026–49. https://doi.org/10.1080/09205063.2019.1620592.
CAS
Article
Google Scholar
Baranwal A, Kumar A, Priyadharshini A, Ogg GS, Bhatnagar I, Srivastava A. et al. Chitosan: an undisputed bio-fabrication material for tissue engineering and bio-sensing applications. Int J Biol Macromol. 2018;110:110–23. https://doi.org/10.1016/j.ijbiomac.2018.01.006.
CAS
Article
Google Scholar
Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res. 1998;13:94–117. https://doi.org/10.1557/jmr.1998.0015.
CAS
Article
Google Scholar
Pandey A, Midha S, Kumar R, Maurya R, Kumar V. Antioxidant and antibacterial hydroxyapatite-based biocomposite for orthopedic applications. Mater Sci Eng C. 2018;88:13–24. https://doi.org/10.1016/j.msec.2018.02.014.
CAS
Article
Google Scholar
Kalantari E, Naghib SM, Iravani NJ, Esmaeili R, Naimi-Jamal MR, Mozafari M. Biocomposites based on hydroxyapatite matrix reinforced with nanostructured monticellite (CaMgSiO4) for biomedical applications: Synthesis, characterization and biological studies. Mater Sci Eng C. 2019;109912. https://doi.org/10.1016/j.msec.2019.109912.
Ramana Ramya J, Thanigai Arul K, Sathiamurthi P, Asokan K. S. Narayana Kalkura, Novel gamma-irradiated agarose-gelatin-hydroxyapatite nanocomposite scaffolds for skin tissue regeneration. Ceram Int.2016;42:11045–54. https://doi.org/10.1016/j.ceramint.2016.04.001.
CAS
Article
Google Scholar
Zerbinati N, Rauso R, Gonzalez P, Cherubino M, D’Este E, Calligaro A, et al. In vitro evaluation of collagen production of human fibroblast treated with hyaluronic acid PEG cross-linked with micromolecules of calcium hydroxyapatite in low concentration. J Biol Regul Homeost Agents. 2017;31:87–90.
CAS
Google Scholar
Okabayashi R, Nakamura M, Okabayashi T, Tanaka Y, Nagai A. Efficacy of Polarized Hydroxyapatite and Silk Fibroin Composite Dressing Gel on Epidermal Recovery From Full-Thickness Skin Wounds. 2009;641–6. https://doi.org/10.1002/jbm.b.31329.
Geese K. Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev. 2003;55:1531–46. https://doi.org/10.1016/j.addr.2003.08.002.
CAS
Article
Google Scholar
Tal H, Moses O, Kozlovsky A, Nemcovsky C. Bioresorbable Collagen Membranes for Guided Bone Regeneration, In: Bone Regen. 2012. https://doi.org/10.5772/34667.
Ferreira AM, Gentile P, Chiono V, Ciardelli G. Collagen for bone tissue regeneration. Acta Biomater. 2012;8:3191–200. https://doi.org/10.1016/j.actbio.2012.06.014.
CAS
Article
Google Scholar
Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials. 2010;3:1863–87. https://doi.org/10.3390/ma3031863.
CAS
Article
Google Scholar
Sela MN, Babinski E, Steinberg D, Kohavi D, Rosen G. Degradation of collagen-guided tissue regeneration membranes by proteolytic enzymes of Porphyromonas gingivalis and its inhibition by antibacterial agents. Clin Oral Implants Res. 2009;20:496–502. https://doi.org/10.1111/j.1600-0501.2008.01678.x.
Article
Google Scholar
Aurora A, Jorgic-Srdjak K. Membranes for periodontal. Regeneration, Acta Stomat Croat. 2005;39:107–12. https://hrcak.srce.hr/896.
Kew SJ, Gwynne JH, Enea D, Abu-Rub M, Pandit A, Zeugolis D. et al. Regeneration and repair of tendon and ligament tissue using collagen fiber biomaterials. Acta Biomater. 2011;7:3237–47. https://doi.org/10.1016/j.actbio.2011.06.002.
CAS
Article
Google Scholar
Quade M, Schumacher M, Bernhardt A, Lode A, Kampschulte M, Voß A. et al. Strontium-modi fi cation of porous sca ff olds from mineralized collagen for potential use in bone defect therapy. Mater Sci Eng C. 2017;84:159–67. https://doi.org/10.1016/j.msec.2017.11.038.
CAS
Article
Google Scholar
Nudelman F, Lausch AJ, Sommerdijk NAJM, Sone ED. In vitro models of collagen biomineralization. J Struct Biol. 2013;183:258–69. https://doi.org/10.1016/j.jsb.2013.04.003.
CAS
Article
Google Scholar
Stevens MM. Biomaterials for bone tissue engineering. Mater Today. 2008;11:18–25. https://doi.org/10.1016/S1369-7021(08)70086-5.
CAS
Article
Google Scholar
Chen Q, Zhu C, Thomas GA. Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Prog Biomater. 2012;1:2. https://doi.org/10.1186/2194-0517-1-2.
Article
Google Scholar
McCullough M, Gomes M, Sankar J, Bhattarai N. Development of chitosan based scaffolds for Bone Regeneration: A Preliminary Report. Corpus ID: 212555531. 2017;1:15–25.
Saravanan S, Chawla A, Vairamani M, Sastry TP, Subramanian KS, Selvamurugan N. Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. Int J Biol Macromol. 2017;104:1975–85. https://doi.org/10.1016/j.ijbiomac.2017.01.034.
CAS
Article
Google Scholar
Hermenean A, Codreanu A, Herman H, Balta C, Rosu M, Mihali CV. et al. Chitosan-Graphene Oxide 3D scaffolds as Promising Tools for Bone Regeneration in Critical-Size Mouse Calvarial Defects. Sci Rep.2017;7:91–95. https://doi.org/10.1038/s41598-017-16599-5.
CAS
Article
Google Scholar
Du C, Cui FZ, Zhu XD, De Groot K. Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater Res. 1999;44:407–15. 10.1002/(SICI)1097-4636(19990315)44:4<407::AID-JBM6>3.0.CO;2-T.
CAS
Article
Google Scholar
Islam MM, Shahruzzaman M, Biswas S, Nurus Sakib M, Rashid TU. Chitosan-based bioactive materials in tissue engineering applications-A review. Bioact Mater. 2020;5:164–83. https://doi.org/10.1016/j.bioactmat.2020.01.012.
Article
Google Scholar
Myhr M, Hjerde R. In vitro degradation rates of partially N-acetylated chitosans in human serum. Carbohydr Res. 1997;299:99–101. http://www.sciencedirect.com/science/article/pii/S0008621596003321. Accessed 12 Nov 2011.
Chatelet C, Damour O, Donard A. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials. 2001;22:261–8. https://doi.org/10.1016/S0142-9612(00)00183-6.
CAS
Article
Google Scholar
Costa-Pinto A, Reis R, Neves N. Scaffolds based bone tissue engineering: the role of chitosan. Tissue Eng Part B Rev. 2011;17:331–47. https://doi.org/10.1089/ten.teb.2010.0704.
CAS
Article
Google Scholar
Becerra J, Sudre G, Royaud I, Montserrat R, Verrier B, Rochas C. et al. Tuning the hydrophilic/hydrophobic balance to control the structure of chitosan films and their protein release behavior. AAPS PharmSciTech. 2017;18:1070–83. https://doi.org/10.1208/s12249-016-0678-9.
CAS
Article
Google Scholar
Xu Y, Han J, Chai Y, Yuan S, Lin H, Zhang X. Development of porous chitosan/tripolyphosphate scaffolds with tunable uncross-linking primary amine content for bone tissue engineering. Mater Sci Eng C. 2018;85:182–90. https://doi.org/10.1016/j.msec.2017.12.032.
CAS
Article
Google Scholar
Vukajlovic D, Parker J, Bretcanu O, Novakovic K. Chitosan-based polymer/bioglass composites for tissue engineering applications. Mater Sci Eng C. 2019;96:955–67. https://doi.org/10.1016/j.msec.2018.12.026.
CAS
Article
Google Scholar
Kouser R, Vashist A, Rizvi MA, Ahmad S. Biocompatible and mechanically robust nanocomposite hydrogels for potential applications in tissue engineering. Mater Sci Eng C. 2018;84:168–79. https://doi.org/10.1016/j.msec.2017.11.018.
CAS
Article
Google Scholar
Michalska-sionkowska M, Kaczmarek B, Walczak M, Sionkowska A. Antimicrobial activity of new materials based on the blends of collagen / chitosan / hyaluronic acid with gentamicin sulfate addition. Mater Sci Eng C. 2018;86:103–8. https://doi.org/10.1016/j.msec.2018.01.005.
CAS
Article
Google Scholar
Francis Suh JK, Matthew HWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000;21:2589–98. https://doi.org/10.1016/S0142-9612(00)00126-5.
CAS
Article
Google Scholar
Elango J, Saravanakumar K, Rahman SU, Henrotin Y, Regenstein JM, Wu, W. et al. Chitosan-collagen 3d matrix mimics trabecular bone and regulates rankl-mediated paracrine cues of differentiated osteoblast and mesenchymal stem cells for bone marrow macrophage-derived osteoclastogenesis, Biomolecules. 2019;9. https://doi.org/10.3390/biom9050173.
Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X. et al. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials. 2003;24:4833–41. https://doi.org/10.1016/S0142-9612(03)00374-0.
CAS
Article
Google Scholar
Yan LP, Wang YJ, Ren L, Wu G, Caridade SG, Fan JB. et al. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J Biomed Mater Res Part A.2010;95 A:465–75. https://doi.org/10.1002/jbm.a.32869.
CAS
Article
Google Scholar
Minabe M, Sugaya A, Satou H, Tamura T, Ogawa Y, Hori T. et al. Histological STudy of the Hydroxyapatite-collagen Complex Implants in Periodontal Osseous Defects in Dogs. J Periodontol.1988;59:671–8. https://doi.org/10.1902/jop.1988.59.10.671.
CAS
Article
Google Scholar
Yunoki S, Ikoma T, Morikawa A, Ohta K, Kikuchi M, Marukawa E, et al. Fabrication of three-dimensional porous hydroxyapatite/collagen composite with rubber-like elasticity, Mater Sci Eng C. 2007. https://doi.org/10.1016/j.msec.2006.11.011.
A Lamarque G, Cretenet M, Viton C, Donard. New route of deacetylation of chitins by means of freeze-pump out-thaw cycles. Biomacromolecules. 2005;6:1380–8.
Article
Google Scholar
Lamarque G, Viton C, Donard A. Comparative study of the first heterogeneous deacetylation of α- and β-chitins in a multistep process. Biomacromolecules. 2004;5:992–1001. https://doi.org/10.1021/bm034498j.
CAS
Article
Google Scholar
Jeuniaux J, Voss-Foucard C, Poulicek MF, Bussers A. Sources of chitin, estimated from new data on chitin biomass production, In: S Skjak-Braek G, A.T., editor. Chitin and Chitosan. London: 1989. pp. 3–11. http://hdl.handle.net/2268/190155.
Tanase CE, Popa MI, Verestiuc L. Biomimetic chitosan-calcium phosphate composites with potential applications as bone substitutes: preparation and characterization. J Biomed Mater Res B Appl Biomater. 2012;100:700–8. https://doi.org/10.1002/jbm.b.32502.
CAS
Article
Google Scholar
Pallela R, Venkatesan J, Janapala VR, Kim S-K. Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering. J Biomed Mater Res A. 2011;486–95. https://doi.org/10.1002/jbm.a.33292.
Danilchenko SN. Chitosan–hydroxyapatite composite biomaterials made by a one step co-precipitation method: preparation, characterization and in vivo tests. J Biol Phys Chem.2009;9:119–26. https://doi.org/10.4024/22DA09A.jbpc.09.03.
CAS
Article
Google Scholar
Zhang J, Liu G, Wu Q, Zuo J, Qin Y, Wang J. Novel mesoporous hydroxyapatite/chitosan composite for bone repair. J Bionic Eng.2012;9:243–51. https://doi.org/10.1016/S1672-6529(11)60117-0.
Article
Google Scholar
Kumar BYS, Isloor AM, Kumar GCM. et al. Nanohydroxyapatite reinforced chitosan composite hydrogel with tunable mechanical and biological properties for cartilage regeneration. Sci Rep.2019;9:1–13. https://doi.org/10.1038/s41598-019-52042-7.
CAS
Article
Google Scholar
Kumar R, Prakash KH, Cheang P, Gower L, a Khor K. Chitosan-mediated crystallization and assembly of hydroxyapatite nanoparticles into hybrid nanostructured films. J R Soc Interface.2008;5:427–39. https://doi.org/10.1098/rsif.2007.1141.
CAS
Article
Google Scholar
Deen I, Pang X, Zhitomirsky I. Electrophoretic deposition of composite chitosan–halloysite nanotube–hydroxyapatite films. Colloids Surf A Physicochem Eng Asp.2012;410:38–44. https://doi.org/10.1016/j.colsurfa.2012.06.011.
CAS
Article
Google Scholar
Li X, Nan K, Shi S, Chen H. Preparation and characterization of nano-hydroxyapatite/chitosan cross-linking composite membrane intended for tissue engineering. Int J Biol Macromol.2012;50:43–49. https://doi.org/10.1016/j.ijbiomac.2011.09.021.
CAS
Article
Google Scholar
Tai H-Y, Fu E, Don T-M. Calcium phosphates synthesized by reverse emulsion method for the preparation of chitosan composite membranes. Carbohydr Polym.2012;88:904–11. https://doi.org/10.1016/j.carbpol.2012.01.042.
CAS
Article
Google Scholar
Huang D, Niu L, Li J, Du J, Wei Y, Hu Y. et al. Reinforced chitosan membranes by microspheres for guided bone regeneration. J Mech Behav Biomed Mater.2018;81:195–201. https://doi.org/10.1016/j.jmbbm.2018.03.006.
CAS
Article
Google Scholar
Liu J, Fang Q, Yu X, Wan Y, Xiao B. Chitosan-based nanofibrous membrane unit with gradient compositional and structural features for mimicking calcified layer in osteochondral matrix, Int J Mol Sci. 2018;19. https://doi.org/10.3390/ijms19082330.
Jo YY, Oh JH. New resorbable membrane materials for guided bone regeneration, Appl Sci. 2018;8. https://doi.org/10.3390/app8112157.
Chu C, Deng J, Sun X, Qu Y, Man Y. Collagen membrane and immune response in guided bone regeneration: recent progress and perspectives. Tissue Eng Part B Rev.2017;23:421–35. https://doi.org/10.1089/ten.teb.2016.0463.
CAS
Article
Google Scholar
Li X, Wang X, Zhao T, Gao B, Miao Y, Zhang D, et al. Guided bone regeneration using chitosan/collagen membranes in dog dehiscence- type defect model, J Oral Maxillofac Surg. 2013. https://doi.org/10.1016/j.joms.2013.09.042.
Ma S, Ajayi A, Liu Z, Li M, Wu M, Xiao L. et al. Asymmetric collagen/chitosan membrane containing minocycline-loaded chitosan nanoparticles for guided bone regeneration. Sci Rep.2016;6:1–10. https://doi.org/10.1038/srep31822.
CAS
Article
Google Scholar
Redepenning J, Venkataraman G, Chen J, Stafford N. Electrochemical preparation of chitosan/hydroxyapatite composite coatings on titanium substrates. J Biomed Mater Res Part A.2003;66:411–6. https://doi.org/10.1002/jbm.a.10571.
CAS
Article
Google Scholar
Sundaram G, Ramakrishnan T, Parthasarathy H, Raja M, Raj S, disease: A cross-link of sorts!, 2018;113–8. https://doi.org/10.4103/jisp.jisp.
Rahman MS, Rana MM, Spitzhorn L-S, Akhtar N, Hasan MZ, Choudhury N. et al. Fabrication of biocompatible porous scaffolds based on hydroxyapatite/collagen/chitosan composite for restoration of defected maxillofacial mandible bone. Prog Biomater.2019;8:137–54. https://doi.org/10.1007/s40204-019-0113-x.
CAS
Article
Google Scholar
Türk S, Altınsoy I, Efe GÇ, Ipek M, Özacar M, Bindal C. 3D porous collagen/functionalized multiwalled carbon nanotube/ chitosan/hydroxyapatite composite scaffolds for bone tissue engineering. Mater Sci Eng C. 2018;92:757–68. https://doi.org/10.1016/j.msec.2018.07.020.
CAS
Article
Google Scholar
Do Amaral MB, Viana RB, Viana KB, Diagone CA, Denis AB, De Guzzi Plepis AM. In vitro and in vivo response of composites based on chitosan, hydroxyapatite and collagen. Acta Sci Technol.2020;42:1–13. https://doi.org/10.4025/actascitechnol.v42i1.41102.
Article
Google Scholar
Huang Z, Feng Q, Yu B, Li S. Biomimetic properties of an injectable chitosan/nano-hydroxyapatite/collagen composite. Mater Sci Eng C.2011;31:683–7. https://doi.org/10.1016/j.msec.2010.12.014.
CAS
Article
Google Scholar
Song JM, Shin SH, Kim YD, Lee JY, Baek YJ, Yoon SY. et al. Comparative study of chitosan/fibroin–hydroxyapatite and collagen membranes for guided bone regeneration in rat calvarial defects: micro-computed tomography analysis. Int J Oral Sci.2014;6:87–93. https://doi.org/10.1038/ijos.2014.16.
CAS
Article
Google Scholar
Teng S-H, Lee E-J, Wang P, Shin D-S, Kim H-E. Three-layered membranes of collagen/hydroxyapatite and chitosan for guided bone regeneration. J Biomed Mater Res Part B Appl Biomater.2008;87B:132–8. https://doi.org/10.1002/jbm.b.31082.
CAS
Article
Google Scholar
Farré-Guasch E, Martí-Pagès C, Hernández-Alfaro F, Klein-Nuland J, Casals N. Buccal fat pad, an oral access source of human adipose stem cells with potential for osteochondral tissue engineering: An in vitro study. Tissue Eng Part C Methods. 2010;16:1083–94. https://doi.org/10.1089/ten.tec.2009.0487.
CAS
Article
Google Scholar
Gad S, Gad-McDonald S. Safety evaluation of medical devices. Biomater Med Devices Comb Prod. 2015;1–10. https://doi.org/10.1201/b19086-2.
Evans BC, Nelson CE, Yu SS, Beavers KR, Kim AJ, Li H, et al. Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J Vis Exp. 2013;e50166:1–5. https://doi.org/10.3791/50166.
Romero MA, Sánchez F, Sabino MA, Rodríguez JP, González G, Noris-Suárez K. Biocompatibility study on substrates fabricated for nerve guides using scanning electron microscopy and comparing two drying sample methods. Acta Microsc. 2011;20:131–40.
CAS
Google Scholar
Margolis HC, Moreno EC. Kinetics of hydroxyapatite dissolution in acetic, lactic, and phosphoric acid solutions. Calcif Tissue Int.1992;50:137–43. https://doi.org/10.1007/BF00298791.
CAS
Article
Google Scholar
Dorozhkin SV. Dissolution mechanism of calcium apatites in acids: a review of literature. World J Methodol.2012;2:1. https://doi.org/10.5662/wjm.v2.i1.1.
Article
Google Scholar
Nara M, Tanokura M. Infrared spectroscopic study of the metal-coordination structures of calcium-binding proteins. Biochem Biophys Res Commun.2008;369:225–39. https://doi.org/10.1016/j.bbrc.2007.11.188.
CAS
Article
Google Scholar
Jin HH, Lee CH, Lee WK, Lee JK, Park HC, Yoon SY. In-situ formation of the hydroxyapatite/chitosan-alginate composite scaffolds. Mater Lett.2008;62:1630–3. https://doi.org/10.1016/j.matlet.2007.09.043.
CAS
Article
Google Scholar
Wan Y, Creber B, Katherine, Peppley AM, Bui VT. Synthesis, characterization and ionic conductive properties of phosphorylated chitosan membranes. Macromol Chem Phys.2003;204:850–8. https://doi.org/10.1002/macp.200390056.
CAS
Article
Google Scholar
Ficai A, Andronescu E, Ghitulica C, Voicu G, Trandafir V, Manzu D, et al. Collagen/hydroxyapatite interactions in composite biomaterials. Mater Plast. 2009;46:11–15.
CAS
Google Scholar
Bozec L, Odlyha M. Thermal denaturation studies of collagen by microthermal analysis and atomic force microscopy. Biophys J.2011;101:228–36. https://doi.org/10.1016/j.bpj.2011.04.033.
CAS
Article
Google Scholar
Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science: an introduction to materials in medicine. 1996. https://doi.org/10.1016/b978-012582460-6/50002-5.
Gaspar R, Duncan R. Polymeric carriers: Preclinical safety and the regulatory implications for design and development of polymer therapeutics. Adv Drug Deliv Rev.2009;61:1220–31. https://doi.org/10.1016/j.addr.2009.06.003.
CAS
Article
Google Scholar
Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29:2941–53. https://doi.org/10.1016/j.biomaterials.2008.04.023.
CAS
Article
Google Scholar
Lederman M. Stage II Carcinoma of the Cervix. J R Soc Med.1976;69:859. https://doi.org/10.1177/003591577606901142.
Article
Google Scholar
Travel MN, Donard A. Collagen and its interaction with chitosan III. Influence of physicochemical characteristics of collagen. Biomaterials. 1995;16:865–71. https://doi.org/10.1016/0142-9612(95)94149-F.
Article
Google Scholar
Travel M. Collagen and its interactions with chitosan III. Some biological and mechanical properties. Biomaterials. 1996;17:451–5. https://doi.org/10.1016/0142-9612(96)89663-3.
Article
Google Scholar
Sionkowska A, Wisniewski M, Skopinska J, Kennedy CJ, Wess TJ. Molecular interactions in collagen and chitosan blends, 2004;25:795–801. https://doi.org/10.1016/S0142-9612(03)00595-7.
Doyle BB, Bendit EG, Blout ER. Infrared spectroscopy of collagen and collagen-like polypeptides. Biopolymers. 1975;14:937–57. https://doi.org/10.1002/bip.1975.360140505.
CAS
Article
Google Scholar
Cutini M, Corno M, Costa D, Ugliengo P. How does collagen adsorb on hydroxyapatite? insights from Ab initio simulations on a polyproline type II model. J Phys Chem C.2019;123:7540–50. https://doi.org/10.1021/acs.jpcc.7b10013.
CAS
Article
Google Scholar
Wang X, Wang X, Tan Y, Zhang B, Gu Z, Li X. Synthesis and evaluation of collagen-chitosan- hydroxyapatite nanocomposites for bone grafting. J Biomed Mater Res Part A.2009;89:1079–87. https://doi.org/10.1002/jbm.a.32087.
CAS
Article
Google Scholar
Zhang K, Zhao M, Cai L, Wang Z, Sun Y, Hu Q. Preparation of chitosan/hydroxyapatite guided membrane used for periodontal tissue regeneration. Chin J Polym Sci. 2010;28:555–61. https://doi.org/10.1007/s10118-010-9087-9.
CAS
Article
Google Scholar
Horwitz E, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini F. et al.Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement.Cytotherapy. 2005;7:393–5. https://doi.org/10.1080/14653240500319234.
CAS
Article
Google Scholar
Shaghiera AD, Widiyanti P, Yusuf H. Synthesis and Characterization of Injectable Hydrogels with Varying Collagen–Chitosan–Thymosin β4 Composition for myocardial infarction. Therapy J Funct Biomater. 2018;9. https://doi.org/10.3390/jfb9020033
Przekora A, Ginalska G. In vitro evaluation of the risk of inflammatory response after chitosan/HA and chitosan/β-1,3-glucan/HA bone scaffold implantation. Mater Sci Eng C. 2016;61:355–61. https://doi.org/10.1016/j.msec.2015.12.066.
CAS
Article
Google Scholar