Skip to main content

Advertisement

Log in

3D construct of hydroxyapatite/zinc oxide/palladium nanocomposite scaffold for bone tissue engineering

  • Tissue Engineering Constructs and Cell Substrates
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The purpose of this study was to produce and characterize Hydroxyapatite/Zinc Oxide/Palladium (HA/0.05 wt% ZnO/0.1 wt% Pd) nanocomposite scaffolds and study their mechanical and antibacterial properties, biocompatibility and bioactivity. The initial materials were developed using sol-gel and precipitation methods. Scaffolds were characterized using atomic absorption analysis (AA), scanning electron microcopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM), atomic force microscopy (AFM) and Brunauer−EmmeS−Teller (BET) method. Furthermore, the bioactivity of scaffolds in simulated body fluid (SBF) and the interaction of dental pulp stem cells (DPSCs) with the nanocomposite scaffolds were assessed. Our results showed that the HA/ZnO/Pd (H1), HA/ZnO/Pd coated by 0.125 g chitosan (H2) and HA/ZnO/Pd coated by 0.25 g chitosan (H3) scaffolds possess higher compressive strength and toughness and lower microhardness and density compared to the pure HA (H0) scaffolds. Immersion of samples in SBF showed the deposition of apatite on the surface of the scaffolds. The biocompatibility assay indicated lower cell proliferation on the H1, H2 and H3 in comparison to the H0. The antibacterial results obtained show a significant impact by loading Pd/ZnO on HA in the deactivation of microorganisms in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lanza R, Langer R, Vacanti J. Principles of tissue engineering. Fourth Edition. Boston: Academic Press; 2007. p. xxxiii

    Book  Google Scholar 

  2. Bahrololoom ME, javidi M, Javadpour S, ma J. Characterisation of natural hydroxyapatite extracted from bovine cortical bone ash. J Ceram Process Res. 2009;10:129

    Google Scholar 

  3. Piccirillo C, Silva MF, Pullar RC, Braga da Cruz I, Jorge R, Pintado MME, et al. Extraction and characterisation of apatite- and tricalcium phosphate-based materials from cod fish bones. Mater Sci Eng C. 2013;33:103. https://doi.org/10.1016/j.msec.2012.08.014

    Article  CAS  Google Scholar 

  4. Manjubala I, Sivakumar M, Sampathkumar TS, Rao KP. Synthesis and characterization of functional gradient materials using Indian corals. J Mater Sci - Mater Med. 2000;11:705. https://doi.org/10.1023/A:1008915510976

    Article  Google Scholar 

  5. Dupoirieux L, Neves M, Pourquier D. Comparison of pericranium and eggshell as space fillers used in combination with guided bone regeneration: an experimental study. J Oral Maxillofac Surg. 2000;58:40. https://doi.org/10.1016/S0278-2391(00)80013-0

    Article  CAS  Google Scholar 

  6. Siva Rama Krishna D, Siddharthan A, Seshadri SK, Sampath Kumar TS. A novel route for synthesis of nanocrystalline hydroxyapatite from eggshell waste. J Mater Sci—Mater Med. 2007;18:1735. https://doi.org/10.1007/s10856-007-3069-7

    Article  CAS  Google Scholar 

  7. Rivera EM, Araiza M, Brostow W, Castano VM, Dıaz-Estrada JR, Hernandez R, et al. Synthesis of hydroxyapatite from eggshells. Mater Lett. 1999;41:128. https://doi.org/10.1016/S0167-577X(99)00118-4

    Article  Google Scholar 

  8. Roy DM, Linnehan SK. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature. 1974;247:220.

    Article  CAS  Google Scholar 

  9. Leukers B, Gulkan H, Irsen SH, Milz S, Tille C, Schieker M, et al. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci—Mater Med. 2005;16:1121. https://doi.org/10.1007/s10856-005-4716-5

    Article  CAS  Google Scholar 

  10. Kuo MC, Yen SK. The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Mater Sci Eng C. 2002;20:153. https://doi.org/10.1016/S0928-4931(02)00026-7

    Article  Google Scholar 

  11. Wei G, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials. 2004;25:4749. https://doi.org/10.1016/j.biomaterials.2003.12.005

    Article  CAS  Google Scholar 

  12. O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today 2011;14:88. https://doi.org/10.1016/S1369-7021(11)70058-X

    Article  CAS  Google Scholar 

  13. Harabi A, Harabi E. A modified milling system, using a bimodal distribution of highly resistant ceramics. Part 1. A natural hydroxyapatite study. Mater Sci Eng C. 2015;51:206. https://doi.org/10.1016/j.msec.2015.03.003

    Article  CAS  Google Scholar 

  14. Heidari F, Razavi M, Bahrololom ME, Bazargan- lari R, Vashaee D, Kotturi H, et al. Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications. Mater Sci Eng C. 2016;65:338. https://doi.org/10.1016/j.msec.2016.04.039

    Article  CAS  Google Scholar 

  15. Wang Y, Dai J, Zhang Q, Xiao Y, Lang M. Improved mechanical properties of hydroxyapatite/poly (ɛ-caprolactone) scaffolds by surface modification of hydroxyapatite. Appl Surf Sci. 2010;256:6107. https://doi.org/10.1016/j.apsusc.2010.03.127

    Article  CAS  Google Scholar 

  16. Tavangar M, Heidari F, Hayati R, Tabatabaei F, Vashaee D, Tayebi L. Manufacturing and characterization of mechanical, biological and dielectric properties of hydroxyapatite-barium titanate nanocomposite scaffolds. Ceram Int. 2019;46:9086. https://doi.org/10.1016/j.ceramint.2019.12.157

    Article  CAS  Google Scholar 

  17. Wan YZ, Huang Y, Yuan CD, Raman S, Zhu Y, Jiang HJ, et al. Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater Sci Eng C. 2007;27:855. https://doi.org/10.1016/j.msec.2006.10.002

    Article  CAS  Google Scholar 

  18. Baradaran S, Moghaddam E, Basirun WJ, Mehrali M, Sookhakian M, Hamdi M, et al. Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon. 2014;69:32. https://doi.org/10.1016/j.carbon.2013.11.054

    Article  CAS  Google Scholar 

  19. Wilson OC, Hull JR. Surface modification of nanophase hydroxyapatite with chitosan. Mater Sci Eng C. 2008;28:434. https://doi.org/10.1016/j.msec.2007.04.005

    Article  CAS  Google Scholar 

  20. Zima A. Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength. Spectrochim Acta Part A. 2018;193:175. https://doi.org/10.1016/j.saa.2017.12.008

    Article  CAS  Google Scholar 

  21. Gholizadeh BS, Buazar F, Hosseini SM, Mousavi SM. Enhanced antibacterial activity, mechanical and physical properties of alginate/hydroxyapatite bionanocomposite film. Int J Biol Macromol. 2018;116:786. https://doi.org/10.1016/j.ijbiomac.2018.05.104

    Article  CAS  Google Scholar 

  22. Yanovska А, Kuznetsov V, Stanislavov A, Husak Е, Pogorielov М, Starikov V, et al. Synthesis and characterization of hydroxyapatite-gelatine composite materials for orthopaedic application. Mater Chem Phys. 2016;183:93. https://doi.org/10.1016/j.matchemphys.2016.08.006

    Article  CAS  Google Scholar 

  23. Sivaperumal VR, Mani R, Nachiappan MS, Arumugam K. Direct hydrothermal synthesis of hydroxyapatite/alumina nanocomposite. Mater Charact. 2017;134:416. https://doi.org/10.1016/j.matchar.2017.11.016

    Article  CAS  Google Scholar 

  24. Martínez CA, Gilabert U, Garrido L, Rosenbusch M, Ozols A. Functionalization of Hydroxyapatite Scaffolds with ZnO. Procedia Mater Sci. 2015;9:484. https://doi.org/10.1016/j.mspro.2015.05.020

    Article  CAS  Google Scholar 

  25. Farrokhi-Rad M. Electrophoretic deposition of fiber hydroxyapatite/titania nanocomposite coatings. Ceram Int. 2018;44:622. https://doi.org/10.1016/j.ceramint.2017.09.221

    Article  CAS  Google Scholar 

  26. Ronen A, Semiat R, Dosoretz CG. Antibacterial efficiency of a composite spacer containing zinc oxide nanoparticles. Procedia Eng. 2012;44:581. https://doi.org/10.1016/j.proeng.2012.08.491

    Article  Google Scholar 

  27. Wang T, Zhang JC, Chen Y, Xiao PG, Yang MS. Effect of zinc ion on the osteogenic and adipogenic differentiation of mouse primary bone marrow stromal cells and the adipocytic trans-differentiation of mouse primary osteoblasts. J Trace Elem Med Biol. 2007;21:84. https://doi.org/10.1016/j.jtemb.2007.01.002

    Article  CAS  Google Scholar 

  28. Lazarević T, Rilak A, Bugarčić ZD. Platinum, palladium, gold and ruthenium complexes as anticancer agents: current clinical uses, cytotoxicity studies and future perspectives. Eur J Med Chem. 2017;142:8. https://doi.org/10.1016/j.ejmech.2017.04.007

    Article  CAS  Google Scholar 

  29. Saxena V, Hasan A, Pandey LM. Effect of Zn/ZnO integration with hydroxyapatite: a review. Mater Technol. 2018;33:79. https://doi.org/10.1080/10667857.2017.1377972

    Article  CAS  Google Scholar 

  30. Ren X, Tuo Q, Tian K, Huang G, Li J, Xu T, et al. Enhancement of osteogenesis using a novel porous hydroxyapatite scaffold in vivo and vitro. Ceram Int. 2018;44:21656. https://doi.org/10.1016/j.ceramint.2018.08.249

    Article  CAS  Google Scholar 

  31. Monmaturapoj N. Nano-size hydroxyapatite powders preparation by wet-chemical precipitation route. Met Mater Min. 2008;18:15.

    CAS  Google Scholar 

  32. Tavakolian E, Tashkhourian J, Razmi Z, Kazemi H, Hosseini-Sarvari M. Ethanol electrooxidation at carbon paste electrode modified with Pd–ZnO nanoparticles. Sens Actuators B 2016;230:87. https://doi.org/10.1016/j.snb.2016.02.006

    Article  CAS  Google Scholar 

  33. Niazi L, Lashanizadegan A, Sharififard H. Chestnut oak shells activated carbon: preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions. J Clean Prod. 2018;185:554. https://doi.org/10.1016/j.jclepro.2018.03.026

    Article  CAS  Google Scholar 

  34. Sharififard H, Pepe F, Soleimani M, Aprea P, Caputo D. Iron-activated carbon nanocomposite: synthesis, characterization and application for lead removal from aqueous solution. RSC Advs. 2016;6:42845. https://doi.org/10.1039/C5RA27923B

    Article  CAS  Google Scholar 

  35. Jaiswal SR, Bhakuni P, Bhagwati G, Joy A, Chakrabarti A, Chakrabarti S. Impact of preemptive granulocyte infusions during febrile neutropenia in patients colonized with carbapenem-resistant gram-negative bacteria undergoing haploidentical transplantation. Biol Blood Marrow Transpl. 2019;25:1621. https://doi.org/10.1016/j.bbmt.2019.04.023

    Article  Google Scholar 

  36. Baig U, Gondal MA, Ansari MA, Akhtar S. Facile synthesis, characterization and antibacterial activity of nanostructured palladium loaded silicon carbide. Ceram Int. 2018;44:16908. https://doi.org/10.1016/j.ceramint.2018.06.129

    Article  CAS  Google Scholar 

  37. Kumar Saini R, Prasad Bagri L, Bajpai AK. Nano-silver hydroxyapatite based antibacterial 3D scaffolds of gelatin/alginate/poly (vinyl alcohol) for bone tissue engineering applications. Colloids Surf B. 2019;177:211. https://doi.org/10.1016/j.colsurfb.2019.01.064

    Article  CAS  Google Scholar 

  38. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907. https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  Google Scholar 

  39. Rasoulianboroujeni M, Kiaie N, SadatTabatabaei F, Yadegari A, Fahimipour F, Khoshroo K, et al. Dual porosity protein-based scaffolds with enhanced cell infiltration and proliferation. Sci Rep. 2018;8:14889. https://doi.org/10.1038/s41598-018-33245-w

    Article  CAS  Google Scholar 

  40. Ilie N, Hickel R. Mechanical behavior of glass ionomer cements as a function of loading condition and mixing procedure. Dent Mater J. 2007;26:526. https://doi.org/10.4012/dmj.26.526

    Article  Google Scholar 

  41. Babu PS, Rao DS, Krishna LR, Sundararajan G. Weibull analysis of hardness distribution in detonation sprayed nano-structured WC-12Co coatings. Surf Coat Technol. 2017;319:394. https://doi.org/10.1016/j.surfcoat.2017.04.028

    Article  CAS  Google Scholar 

  42. Mohandes F, Salavati-Niasari M. Influence of morphology on the in vitro bioactivity of hydroxyapatite nanostructures prepared by precipitation method. N J Chem. 2014;38:4501. https://doi.org/10.1039/C4NJ00649F

    Article  CAS  Google Scholar 

  43. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials. 2000;21:1803. https://doi.org/10.1016/S0142-9612(00)00075-2

    Article  Google Scholar 

  44. Aina V, Malavasi G, Pla AF, Munaron L, Morterra C. Zinc-containing bioactive glasses: surface reactivity and behaviour towards endothelial cells. Acta Biomater. 2009;5:305. https://doi.org/10.1016/j.actbio.2008.10.020

    Article  CAS  Google Scholar 

  45. Lai D, Cheng W, Liu T, Jiang L, Liu T, Huang Q, et al. Optimization of culture conditions to support undifferentiated growth of human embryonic stem cells. Cell Reprogramming. 2010;12:305. https://doi.org/10.1089/cell.2009.0106

    Article  CAS  Google Scholar 

  46. Potdar PD, Jethmalani YD. Human dental pulp stem cells: applications in future regenerative medicine. World J Stem Cells. 2015;7:839. https://doi.org/10.4252/wjsc.v7.i5.839

    Article  Google Scholar 

  47. Chowdhury A. Constitutive modelling and Weibull statistical analysis for the porosity-mechanical property correlations in 3% yittria-stabilized zirconia system. Int J Refract Met Hard Mater 2018;70:246. https://doi.org/10.1016/j.ijrmhm.2017.10.020

    Article  CAS  Google Scholar 

  48. Heidari F, Razavi M, Ghaedi M, Forooghi M, Tahriri M, Tayebi L. Investigation of mechanical properties of natural hydroxyapatite samples prepared by cold isostatic pressing method. J Alloy Compd. 2017;693:1150. https://doi.org/10.1016/j.jallcom.2016.10.081

    Article  CAS  Google Scholar 

  49. Wang J, Shaw LL. Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness. Biomaterials. 2009;30:6565. https://doi.org/10.1016/j.biomaterials.2009.08.048

    Article  CAS  Google Scholar 

  50. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012;2012:10. https://doi.org/10.5402/2012/195727

    Article  CAS  Google Scholar 

  51. Percival SL, Malic S, Cruz H, Williams DW (2011) Introduction to biofilms. In: Biofilms and veterinary medicine. Springer, Berlin, Heidelberg. p 41–68.

  52. Mendonça G, Mendonça DB, Aragao FJ, Cooper LF. Advancing dental implant surface technology–from micron-to nanotopography. Biomaterials. 2008;29:3822. https://doi.org/10.1016/j.biomaterials.2008.05.012

    Article  CAS  Google Scholar 

  53. Golabi M, Turner AP, Jager EW. Tunable conjugated polymers for bacterial differentiation. Sens Actuators B Chem. 2016;222:839. https://doi.org/10.1016/j.snb.2015.09.033.

    Article  CAS  Google Scholar 

  54. Natan M, Banin E. From Nano to Micro: using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiol Rev. 2017;41:302. https://doi.org/10.1093/femsre/fux003

    Article  CAS  Google Scholar 

  55. Cepin M, Hribar G, Caserman S, Orel ZC. Morphological impact of zinc oxide particles on the antibacterial activity and human epithelia toxicity. Biomater Mater Sci Eng C Mater Biol Appl. 2015;52:204. https://doi.org/10.1016/j.msec.2015.03.053

    Article  CAS  Google Scholar 

  56. Jafarirad S, Mehrabi M, Divband B, Kosari-Nasab M. Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: a mechanistic approach. Mater Sci Eng C Mater Biol Appl. 2016;59:296. https://doi.org/10.1016/j.msec.2015.09.089

    Article  CAS  Google Scholar 

  57. Grenho L, Salgado CL, Fernandes MH, Monteiro FJ, Ferraz MP. Antibacterial activity and biocompatibility of three-dimensional nanostructured porous granules of hydroxyapatite and zinc oxide nanoparticles—an in vitro and in vivo study. Nanotechnology. 2015;26:315101. https://doi.org/10.1088/0957-4484/26/31/315101

    Article  CAS  Google Scholar 

  58. Li Z, Yang R, Yu M, Bai F, Li C, Wang ZL. Cellular level biocompatibility and biosafety of ZnO nanowires. J Phys Chem C. 2008;112:20114. https://doi.org/10.1021/jp808878p

    Article  CAS  Google Scholar 

  59. Ghaderi-Shekhi Abadi P, Shirazi FH, Joshaghani M, Moghimi HR. Influence of formulation of ZnO nanoblokes containing metallic ions dopants on their cytotoxicity and protective factors: an in vitro study on human skin cells exposed to UVA radiation. Toxicol Rep. 2018;5:468. https://doi.org/10.1016/j.toxrep.2018.03.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Iran National Science Foundation, INSF, (Grant No. 95838463). The authors would like to thank gratefully Iran National Science Foundation, INSF, for financial support of the research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Heidari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, F., Tabatabaei, F.S., Razavi, M. et al. 3D construct of hydroxyapatite/zinc oxide/palladium nanocomposite scaffold for bone tissue engineering. J Mater Sci: Mater Med 31, 85 (2020). https://doi.org/10.1007/s10856-020-06409-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-06409-2

Navigation