Skip to main content

Advertisement

Log in

In vitro antibacterial properties and UV induced response from Staphylococcus epidermidis on Ag/Ti oxide thin films

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Implanted materials are susceptible to bacterial colonization and biofilm formation, which can result in severe infection and lost implant function. UV induced photocatalytic disinfection on TiO2 and release of Ag+ ions are two promising strategies to combat such events, and can be combined for improved efficiency. In the current study, a combinatorial physical vapor deposition technique was utilized to construct a gradient coating between Ag and Ti oxide, and the coating was evaluated for antibacterial properties in darkness and under UV light against Staphylococcus epidermidis. The findings revealed a potent antibacterial effect in darkness due to Ag+ release, with near full elimination (97 %) of viable bacteria and visible cell lysis on Ag dominated surfaces. The photocatalytic activity, however, was demonstrated poor due to low TiO2 crystallinity, and UV light irradiation of the coating did not contribute to the antibacterial effect. On the contrary, bacterial viability was in several instances higher after UV illumination, proposing a UV induced SOS response from the bacteria that limited the reduction rate during Ag+ exposure. Such secondary effects should thus be considered in the development of multifunctional coatings that rely on UV activation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Campoccia D, Montanaro L, Arciola CR. A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces. Biomaterials. 2013;34:8018–29.

    Article  Google Scholar 

  2. Neu HC. The crisis in antibiotic resistance. Science. 1992;257:1064–73.

    Article  Google Scholar 

  3. Yu J, Xiong J, Cheng B, Liu S. Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl Catal B Environ. 2005;60:211–21.

    Article  Google Scholar 

  4. Yu B, Leung KM, Guo Q, Lau WM, Yang J. Synthesis of Ag–TiO2 composite nano thin film for antimicrobial application. Nanotechnology. 2011;22:115603.

    Article  Google Scholar 

  5. Maness P, Smolinski S, Blake D, Huang Z, Wolfrum E, Jacoby W. Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol. 1999;65:4094–8.

    Google Scholar 

  6. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52:662–8.

    Article  Google Scholar 

  7. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–53.

    Article  Google Scholar 

  8. Sung-Suh HM, Choi JR, Hah HJ, Koo SM, Bae YC. Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. J Photoch Photobiol A. 2004;163:37–44.

    Article  Google Scholar 

  9. Page K, Palgrave RG, Parkin IP, Wilson M, Savin SLP, Chadwick AV. Titania and silver-titania composite films on glass-potent antimicrobial coatings. J Mater Chem. 2006;17:95–104. doi:10.1039/b611740f.

    Article  Google Scholar 

  10. Seery MK, George R, Floris P, Pillai SC. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J Photoch Photobio A. 2007;189:258–63. doi:10.1016/j.jphotochem.2007.02.010.

    Article  Google Scholar 

  11. Mai L, Wang D, Zhang S, Xie Y, Huang C, Zhang Z. Synthesis and bactericidal ability of Ag/TiO2 composite films deposited on titanium plate. Appl Surf Sci. 2010;257:974–8.

    Article  Google Scholar 

  12. Necula BS, Fratila-Apachitei LE, Zaat SAJ, Apachitei I, Duszczyk J. In vitro antibacterial activity of porous TiO2–Ag composite layers against methicillin-resistant Staphylococcus aureus. Acta Biomater. 2009;5:3573–80.

    Article  Google Scholar 

  13. Machida M, Norimoto K, Kimura T. Antibacterial activity of photocatalytic titanium dioxide thin films with photodeposited silver on the surface of sanitary ware. J Am Ceram Soc. 2004;88:95–100.

    Article  Google Scholar 

  14. Ewald A, Glückermann SK, Thull R, Gbureck U. Antimicrobial titanium/silver PVD coatings on titanium. Biomed Eng Online. 2006;5:22.

    Article  Google Scholar 

  15. Unosson E, Rodriguez D, Welch K, Engqvist H. Reactive combinatorial synthesis and characterization of a gradient Ag-Ti oxide thin film with antibacterial properties. Acta Biomater. 2015;11:503–10.

    Article  Google Scholar 

  16. McFarland E, Weinberg W. Combinatorial approaches to materials discovery. Trends Biotechnol. 1999;17:107–15.

    Article  Google Scholar 

  17. Amis EJ, Xiang X-D, Zhao J-C. Combinatorial materials science: What’s new since Edison? MRS Bull. 2002;27:295–300.

    Article  Google Scholar 

  18. Unosson E, Tsekoura EK, Engqvist H, Welch K. Synergetic inactivation of Staphylococcus epidermidis and Streptococcus mutansin a TiO2/H2O2/UV system. Biomatter. 2013;3:e26727.

    Article  Google Scholar 

  19. Unosson E, Cai Y, Jiang X, Lööf J, Welch K, Engqvist H. Antibacterial properties of dental luting agents: potential to hinder the development of secondary caries. Int J Dent. 2012;2012:1–7.

    Article  Google Scholar 

  20. Sarker SD, Nahar L, Kumarasamy Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods. 2007;42:321–4.

    Article  Google Scholar 

  21. Simchi A, Tamjid E, Pishbin F, Boccaccini AR. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine. 2011;7:22–39.

    Article  Google Scholar 

  22. Foster HA, Ditta IB, Varghese S, Steele A. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol. 2011;90:1847–68.

    Article  Google Scholar 

  23. Zhao L, Wang H, Huo K, Cui L, Zhang W, Ni H, et al. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials. 2010;32:5706–16.

    Article  Google Scholar 

  24. Lan M-Y, Liu C-P, Huang H-H, Lee S-W. Both enhanced biocompatibility and antibacterial activity in Ag-decorated TiO2 nanotubes. PLoS One. 2013;8:e75364.

    Article  Google Scholar 

  25. Unosson E, Welch K, Persson C, Engqvist H. Stability and prospect of UV/H2O2 activated titania films for biomedical use. Appl Surf Sci. 2013;285:317–23.

    Article  Google Scholar 

  26. Carp O, Huisman C, Reller A. Photoinduced reactivity of titanium dioxide. Prog Solid State Chem. 2004;32:33–177.

    Article  Google Scholar 

  27. Lindenauer KG, Darby JL. Ultraviolet disinfection of wastewater: Effect of dose on subsequent photoreactivation. Water Res. 1993;28:805–17.

    Article  Google Scholar 

  28. United States Environmental Protection Agency. Ultraviolet disinfection guidance manual for the final long term 2 enhanced surface water treatment rule. http://www.epa.gov/ogwdw000/disinfection/lt2/pdfs/guide_lt2_uvguidance.pdf; 2006 Nov pp. 1–436.

  29. Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007;3:95–101.

    Article  Google Scholar 

  30. Sant SB, Gill KS, Burrell RE. Nanostructure, dissolution and morphology characteristics of microcidal silver films deposited by magnetron sputtering. Acta Biomater. 2007;3:341–50.

    Article  Google Scholar 

  31. Crowley DJ, Courcelle J. Answering the call: coping with DNA damage at the most inopportune time. J Biomed Biotechnol. 2002;2:66–74.

    Article  Google Scholar 

  32. Erill I, Campoy S, Barbé J. Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev. 2007;31:637–56.

    Article  Google Scholar 

  33. Gallardo-Moreno AM, Pacha-Olivenza MA, Fernández-Calderon M-C, Pérez-Giraldo C, Bruque JM, González-Martín M-L. Bactericidal behaviour of Ti6Al4V surfaces after exposure to UV-C light. Biomaterials. 2010;31:5159–68.

    Article  Google Scholar 

  34. Lilja M, Forsgren J, Welch K, Åstrand M, Engqvist H, Strømme M. Photocatalytic and antimicrobial properties of surgical implant coatings of titanium dioxide deposited though cathodic arc evaporation. Biotechnol Lett. 2012;34:2299–305.

    Article  Google Scholar 

  35. Cooper VS, Bennett AF, Lenski RE. Evolution of thermal dependence of growth rate of Escherichia coli populations during 20,000 generations in a constant environment. Evolution. 2001;55:889–96.

    Article  Google Scholar 

  36. Guillobel H, Leitão AC. Characterization of Staphylococcus epidermidis mutants sensitive to ultraviolet radiation. Mutat Res. 1988;193:1–10.

    Google Scholar 

  37. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interf Sci. 2004;275:177–82.

  38. Gao A, Hang R, Huang X, Zhao L, Zhang X, Wang L, et al. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials. 2014;35:4223–35.

    Article  Google Scholar 

  39. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74:2171–8.

    Article  Google Scholar 

  40. Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B. 2009;79:340–4.

    Article  Google Scholar 

  41. Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomedicine. 2012;8:916–24.

    Article  Google Scholar 

  42. Qin H, Cao H, Zhao Y, Zhu C, Cheng T, Wang Q, et al. In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium. Biomaterials. 2014;35:9114–25.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swedish Foundation for Strategic Research (SSF), through the ProViking Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Unosson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unosson, E., Morgenstern, M., Engqvist, H. et al. In vitro antibacterial properties and UV induced response from Staphylococcus epidermidis on Ag/Ti oxide thin films. J Mater Sci: Mater Med 27, 49 (2016). https://doi.org/10.1007/s10856-015-5662-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5662-5

Keywords

Navigation