Skip to main content

Advertisement

Log in

A new sheep model with automatized analysis of biomaterial-induced bone tissue regeneration

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Presently, several bone graft substitutes are being developed or already available for clinical use. However, the limited number of clinical and in vivo trials for direct comparison between these products may complicate this choice. One of the main reasons for this scarcity it is the use of models that do not readily allow the direct comparison of multiple bone graft substitutes, due especially to the small number of implantation sites. Although sheep cancellous bone models are now well established for these purposes, the limited availability of cancellous bone makes it difficult to find multiple comparable sites within a same animal. These limitations can be overcome by the monocortical model here proposed as it consists in 5–6 holes (5 mm Ø), in the femoral diaphysis, with similar bone structure, overlying soft tissue and loading pattern for all defects. Associated to this model, it is also described a fast histomorphometric analysis method using a computer image segmentation test (Threshold method) to assess bone regeneration parameters. The information compiled through the experimental use of 45 sheep in several studies allowed determining that this ovine model has the potential to demonstrate differences in bone-forming performance between various scaffolds. Additionally, the described histomorphometric method is fast, accurate and reproducible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Stills movie 1
Stills movie 2
Stills movie 3
Stills movie 4
Stills movie 5

Similar content being viewed by others

References

  1. Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater. 2007;13:1–10.

    Google Scholar 

  2. Martini L, Fini M, Giavaresi G, Giardino R. Sheep model in orthopedic research: a literature review. Comp Med. 2001;51(4):292–9.

    Google Scholar 

  3. Nahid M, Bottenberg P. Importance of cell cultures in biocompatible dental materials research. Rev Belge Med Dent. 2003;58(3):189–96.

    Google Scholar 

  4. Barradas AM, Yuan H, van Blitterswijk CA, Habibovic P. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur Cell Mater. 2011;21:407–29 Discussion 29.

    Google Scholar 

  5. Davidson MK, Lindsey JR, Davis JK. Requirements and selection of an animal model. Isr J Med Sci. 1987;23(6):551–5.

    Google Scholar 

  6. Newman E, Turner AS, Wark JD. The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone. 1995;16(4 Suppl):277S–84S.

    Article  Google Scholar 

  7. Potes JC, Reis J, Capela e Silva F, Relvas C, Cabrita AS, Simões JA. The sheep as an animal model in orthopaedic research. Exp Pathol Health Sci. 2008;2(1):29–32.

    Google Scholar 

  8. Chen D, Bertollo N, Lau A, Taki N, Nishino T, Mishima H, et al. Osseointegration of porous titanium implants with and without electrochemically deposited DCPD coating in an ovine model. J Orthop Surg Res. 2011;6:56.

    Article  Google Scholar 

  9. Martini L, Staffa G, Giavaresi G, Salamanna F, Parrilli A, Serchi E, et al. Long-term results following cranial hydroxyapatite prosthesis implantation in a large skull defect model. Plast Reconstr Surg. 2012;129(4):625e–35e.

    Article  Google Scholar 

  10. McMahon S, Hawdon G, Bare J, Yu Y, Bertollo N, Walsh WR. In vivo response of bone defects filled with PMMA in an ovine model. Hip Int. 2011;21(5):616–22.

    Article  Google Scholar 

  11. Pektas ZO, Bayram B, Balcik C, Develi T, Uckan S. Effects of different mandibular fracture patterns on the stability of miniplate screw fixation in angle mandibular fractures. Int J Oral Maxillofac Surg. 2012;41(3):339–43.

    Article  Google Scholar 

  12. Plecko M, Sievert C, Andermatt D, Frigg R, Kronen P, Klein K, et al. Osseointegration and biocompatibility of different metal implants—a comparative experimental investigation in sheep. BMC Musculoskelet Disord. 2012;13:32.

    Article  Google Scholar 

  13. Solchaga LA, Hee CK, Aguiar DJ, Ratliff J, Turner AS, Seim HB 3rd, et al. Augment bone graft products compare favorably with autologous bone graft in an ovine model of lumbar interbody spine fusion. Spine. 2012;37(8):E461–7.

    Article  Google Scholar 

  14. Borsari V, Fini M, Giavaresi G, Tschon M, Chiesa R, Chiusoli L, et al. Comparative in vivo evaluation of porous and dense duplex titanium and hydroxyapatite coating with high roughnesses in different implantation environments. J Biomed Mater Res A. 2009;89(2):550–60.

    Article  Google Scholar 

  15. Bacchelli B, Giavaresi G, Franchi M, Martini D, De Pasquale V, Trire A, et al. Influence of a zirconia sandblasting treated surface on peri-implant bone healing: an experimental study in sheep. Acta Biomater. 2009;5(6):2246–57.

    Article  Google Scholar 

  16. Van der Pol U, Mathieu L, Zeiter S, Bourban PE, Zambelli PY, Pearce SG, et al. Augmentation of bone defect healing using a new biocomposite scaffold: an in vivo study in sheep. Acta Biomater. 2010;6(9):3755–62.

    Article  Google Scholar 

  17. Gisep A, Wieling R, Bohner M, Matter S, Schneider E, Rahn B. Resorption patterns of calcium–phosphate cements in bone. J Biomed Mater Res A. 2003;66(3):532–40.

    Article  Google Scholar 

  18. Bouré LP, Zeiter S, Seidenglanz U, Leitner M, Van der Pol B, Matthys R, et al., editors. A novel sheep model for evaluating biomaterials in cancellous bone. ECM IX Musculoskeletal Trauma—50 Years of AO Research, Davos, Switzerland; 2008.

  19. Huffer WE, Benedict JJ, Turner AS, Briest A, Rettenmaier R, Springer M, et al. Repair of sheep long bone cortical defects filled with COLLOSS, COLLOSS E, OSSAPLAST, and fresh iliac crest autograft. J Biomed Mater Res B. 2007;82(2):460–70.

    Article  Google Scholar 

  20. Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3(Suppl 3):S131–9.

    Article  Google Scholar 

  21. Hansen B. The three Rs in the policy context. Conference-state of the art of Research on the Three Rs [Internet]. (2002–2013). http://ec.europa.eu/research/info/conferences/rrr/ppt/hansen.pdf. Accessed 15 Apr 2013.

  22. Hallman M, Cederlund A, Lindskog S, Lundgren S, Sennerby L. A clinical histologic study of bovine hydroxyapatite in combination with autogenous bone and fibrin glue for maxillary sinus floor augmentation. Clin Oral Implants Res. 2001;12(2):135–43.

    Article  Google Scholar 

  23. Norton MR, Odell EW, Thompson ID, Cook RJ. Efficacy of bovine bone mineral for alveolar augmentation: a human histologic study. Clin Oral Implants Res. 2003;14(6):775–83.

    Article  Google Scholar 

  24. Somanathan R, Simůnek A. Evaluation of the success of beta-tricalciumphosphate and deproteinized bovine bone in maxillary sinus augmentation using histomorphometry: a review. Acta Medica (Hradec Kralove). 2006;49(2):87–9.

    Google Scholar 

  25. Cortez PP, Atayde LM, Silva MA, Armada-da-Silva P, Fernandes MH, Afonso A, et al. Characterization and preliminary in vivo evaluation of a novel modified hydroxyapatite produced by extrusion and spheronization techniques. J Biomed Mater Res B. 2011;99(1):170–9.

    Article  Google Scholar 

  26. Gundersen HJG, Bendtsen TF, Korbo L, Marcussen N, MØLler A, Nielsen K, et al. Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APMIS. 1988;96(1–6):379–94.

    Article  Google Scholar 

  27. Lopes MA, Santos JD, Monteiro FJ, Ohtsuki C, Osaka A, Kaneko S, et al. Push-out testing and histological evaluation of glass reinforced hydroxyapatite composites implanted in the tibia of rabbits. J Biomed Mater Res. 2001;54(4):463–9.

    Article  Google Scholar 

  28. Mandarim-de-Lacerda CA. Stereological tools in biomedical research. An Acad Bras Ciênc. 2003;75:469–86.

    Article  Google Scholar 

  29. Cortez PP, Silva MA, Santos M, Armada-da-Silva P, Afonso A, Lopes MA, et al. A glass-reinforced hydroxyapatite and surgical-grade calcium sulfate for bone regeneration: in vivo biological behavior in a sheep model. J Biomater Appl. 2012;2:201–17.

    Article  Google Scholar 

  30. Efford N. Digital image processing: a practical introduction using java (with CD-ROM). Boston: Addison-Wesley Longman; 2000. p. 352.

    Google Scholar 

  31. Burger W, Burge MJ. Principles of digital image processing: fundamental techniques. New York: Springer; 2009. p. 259.

    Google Scholar 

  32. Lopes M, Santos J, Monteiro F, Knowles J. Glass-reinforced hydroxyapatite: a comprehensive study of the effect of glass composition on the crystallography of the composite. J Biomed Mater Res. 1998;39(2):244–51.

    Article  Google Scholar 

  33. ImageJ. In: Rasband WS, editor. Bethesda: U. S. National Institutes of Health; 1997–2012.

  34. Harms C, Helms K, Taschner T, Stratos I, Ignatius A, Gerber T, et al. Osteogenic capacity of nanocrystalline bone cement in a weight-bearing defect at the ovine tibial metaphysis. Int J Nanomed. 2012;7:2883–9.

    Article  Google Scholar 

  35. Seeman E. Periosteal bone formation–a neglected determinant of bone strength. N Eng J Med. 2003;349(4):320–3.

    Article  Google Scholar 

  36. Schopper C, Ziya-Ghazvini F, Goriwoda W, Moser D, Wanschitz F, Spassova E, et al. HA/TCP compounding of a porous CaP biomaterial improves bone formation and scaffold degradation—a long-term histological study. J Biomed Mater Res B. 2005;74(1):458–67.

    Article  Google Scholar 

  37. Lu J, Flautre B, Anselme K, Hardouin P, Gallur A, Descamps M, et al. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci. 1999;10(2):111–20.

    Google Scholar 

  38. Boyd D, Carroll G, Towler M, Freeman C, Farthing P, Brook I. Preliminary investigation of novel bone graft substitutes based on strontium–calcium–zinc–silicate glasses. J Mater Sci. 2009;20(1):413–20.

    Google Scholar 

  39. Shapiro F. Cortical bone repair. The relationship of the lacunar-canalicular system and intercellular gap junctions to the repair process. J Bone Joint Surg Am. 1988;70(7):1067–81.

    Google Scholar 

  40. Shapiro F. Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cells Mater. 2008;15:53–76.

    Google Scholar 

  41. Dwek JR. The periosteum: what is it, where is it, and what mimics it in its absence? Skeletal Radiol. 2010;39(4):319–23.

    Article  Google Scholar 

  42. Glimcher MJ, Shapiro F, Ellis RD, Eyre DR. Changes in tissue morphology and collagen composition during the repair of cortical bone in the adult chicken. J Bone Joint Surg Am. 1980;62(6):964–73.

    Google Scholar 

  43. Griffon DJ. Fracture healing. In: Johnson AL, Houlton JEF, Vannini R, editors. AO principles of fracture management in the dog and cat. New York: AO; 2005. p. 72–97.

    Google Scholar 

  44. Reis ECC, Borges APB, Fonseca CC, Martinez MMM, Eleotério RB, Morato GO, et al. Biocompatibility, osteointegration, osteoconduction, and biodegradation of a hydroxyapatite-polyhydroxybutyrate composite. Braz Arch Biol Technol. 2010;53:817–26.

    Article  Google Scholar 

  45. Doblaré M, García JM, Gómez MJ. Modelling bone tissue fracture and healing: a review. Eng Fract Mech. 2004;71(13–14):1809–40.

    Article  Google Scholar 

  46. Kamitakahara M, Ohtsuki C, Miyazaki T. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J Biomater Appl. 2008;23(3):197–212.

    Article  Google Scholar 

  47. Srivastav A. An overview of metallic biomaterials for bone support and replacement. Biomed Eng Trends Mater Sci. 2011:153–168.

  48. LeGeros R, Lin S, Rohanizadeh R, Mijares D, LeGeros J. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci. 2003;14(3):201–9.

    Google Scholar 

Download references

Acknowledgments

This research was supported by QREN I&DT Cluster in Development of Products for Regenerative Medicine and Cell Therapies – Projects Biomat & Cell QREN 2008/1372 and Project TRIBONE, No 11458, co-financed by the European Community FEDER fund through ON2 - O Novo Norte – North Portugal Regional Operational Program 2007–2013, by project FCT – ENMED/0002/2010 from Fundação para a Ciência e Tecnologia (FCT), Ministério da Educação e da Ciência and EuroNanoMed JTC 2010 Program, and by the program COMPETE – Programa Operacional Factores de Competitividade, Project Pest-OE/AGR/UI0211/2011. The authors are grateful to Mrs. Ana Mota (FMD-UP), for her technical assistance with the histological studies.

Disclosure

Authors declare that the manuscript does not have any commercial association that might create a conflict of interest. Also, any competing financial interests, actual or potential, of each author has been appropriately disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Atayde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atayde, L.M., Cortez, P.P., Pereira, T. et al. A new sheep model with automatized analysis of biomaterial-induced bone tissue regeneration. J Mater Sci: Mater Med 25, 1885–1901 (2014). https://doi.org/10.1007/s10856-014-5216-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5216-2

Keywords

Navigation