Skip to main content
Log in

Behavior of osteoblast-like cells on calcium-deficient hydroxyapatite ceramics composed of particles with different shapes and sizes

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In designing the biomaterials, it is important to control their surface morphologies, because they affect the interactions between the materials and cells. We previously reported that porous calcium-deficient hydroxyapatite (HA) ceramics composed of rod-like particles had advantages over sintered porous HA ceramics; however, the effects of the surface morphology of calcium-deficient HA ceramics on cell behavior have remained unclear. Using a hydrothermal process, we successfully prepared porous calcium-deficient HA ceramics with different surface morphologies, composed of plate-like particles of 200–300, 500–800 nm, or 2–3 μm in width and rod-like particles of 1 or 3–5 μm in width, respectively. The effects of these surface morphologies on the behavior of osteoblast-like cells were examined. Although the numbers of cells adhered to the ceramic specimens did not differ significantly among the specimens, the proliferation rates of cells on the ceramics decreased with decreasing particle size. Our results reveal that controlling the surface morphology that is governed by particle shape and size is important for designing porous calcium-deficient HA ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater. 2013;9:8037–45.

    Article  Google Scholar 

  2. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  Google Scholar 

  3. LeGeros RW. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res. 2002;395:81–98.

    Article  Google Scholar 

  4. Hoogendoorn HA, Renooij W, Akkermans LM, Visser W, Wittebol P. Long-term study of large ceramic implants (porous hydroxyapatite) in dog femora. Clin Orthop Relat Res. 1984;187:281–8.

    Google Scholar 

  5. Ioku K, Kawachi G, Sasaki S, Fujimori H, Goto S. Hydrothermal preparation of tailored hydroxyapatite. J Mater Sci. 2006;41:1341–4.

    Article  Google Scholar 

  6. Ioku K. Tailored bioceramics of calcium phosphates for regenerative medicine. J Ceram Soc Jpn. 2010;118:775–83.

    Article  Google Scholar 

  7. Okuda T, Ioku K, Yonezawa I, Minagi H, Gonda Y, Kawachi G, Kamitakahara M, Shibata Y, Murayama H, Kurosawa H, Ikeda T. The slow resorption with replacement by bone of a hydrothermally synthesized pure calcium-deficient hydroxyapatite. Biomaterials. 2008;29:2719–28.

    Article  Google Scholar 

  8. Gonda Y, Ioku K, Shibata Y, Okuda T, Kawachi G, Kamitakahara M, Murayama H, Hideshima K, Kamihira S, Yonezawa I, Kurosawa H, Ikeda T. Stimulatory effect of hydrothermally synthesized biodegradable hydroxyapatite granules on osteogenesis and direct association with osteoclasts. Biomaterials. 2009;30:4390–400.

    Article  Google Scholar 

  9. Okuda T, Ioku K, Yonezawa I, Minagi H, Kawachi G, Gonda Y, Murayama H, Shibata Y, Minami S, Kamihira S, Kurosawa H, Ikeda T. The effect of the microstructure of β-tricalcium phosphate on the metabolism of subsequently formed bone tissue. Biomaterials. 2007;28:2612–21.

    Article  Google Scholar 

  10. Bagambisa FB, Joos U. Preliminary studies on the phenomenological behaviour of osteoblasts cultured on hydroxyapatite ceramics. Biomaterials. 1990;11:50–6.

    Article  Google Scholar 

  11. Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials. 2001;22:87–96.

    Article  Google Scholar 

  12. Ball M, Grant DM, Lo WJ, Scotchford CA. The effect of different surface morphology and roughness on osteoblast-like cells. J Biomed Mater Res A. 2008;86:637–47.

    Article  Google Scholar 

  13. Lu X, Leng Y. Comparison of the osteoblast and myoblast behavior on hydroxyapatite microgrooves. J Biomed Mater Res B Appl Biomater. 2009;90:438–45.

    Google Scholar 

  14. Okada S, Nagai A, Oaki Y, Komotori J, Imai H. Control of cellular activity of fibroblasts on size-tuned fibrous hydroxyapatite nanocrystals. Acta Biomater. 2011;7:1290–7.

    Article  Google Scholar 

  15. Dos Santos EA, Farina M, Soares GA, Anselme K. Chemical and topographical influence of hydroxyapatite and β-tricalcium phosphate surfaces on human osteoblastic cell behavior. J Biomed Mater Res A. 2009;89:510–20.

    Article  Google Scholar 

  16. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials. 2000;21:1803–10.

    Article  Google Scholar 

  17. Huang J, Best SM, Bonfield W, Brooks RA, Rushton N, Jayasinghe SN, Edirisinghe MJ. In vitro assessment of the biological response to nano-sized hydroxyapatite. J Mater Sci Mater Med. 2004;15:441–5.

    Article  Google Scholar 

  18. Balasundaram G, Sato M, Webster TJ. Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. Biomaterials. 2006;27:2798–805.

    Article  Google Scholar 

  19. He HW, Li GD, Li B, Chen ZQ. Effects of surface microstructure of hydroxyapatite on protein adsorption and biological performance of osteoblasts. Appl Surf Sci. 2008;255:565–7.

    Article  Google Scholar 

  20. Shi Z, Huang X, Cai Y, Tang R, Yang D. Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater. 2009;5:338–45.

    Article  Google Scholar 

  21. Okada S, Ito H, Nagai A, Komotori J, Imai H. Adhesion of osteoblast-like cells on nanostructured hydroxyapatite. Acta Biomater. 2010;6:591–7.

    Article  Google Scholar 

  22. Mavropoulos E, Rossi AM, da Rocha NC, Soares GA, Moreira JC, Moure GT. Dissolution of calcium-deficient hydroxyapatite synthesized at different conditions. Mater Charact. 2003;50:203–7.

    Article  Google Scholar 

  23. Best S, Sim B, Kayser M, Downes S. The dependence of osteoblastic response on variations in the chemical composition and physical properties of hydroxyapatite. J Mater Sci Mater Med. 1997;8:97–103.

    Article  Google Scholar 

  24. Berube P, Yang Y, Carnes DL, Stover RE, Boland EJ, Ong JL. The effect of sputtered calcium phosphate coatings of different crystallinity on osteoblast differentiation. J Periodontol. 2005;76:1697–709.

    Article  Google Scholar 

  25. Kamitakahara M, Ohtsuki C, Kawachi G, Wang D, Ioku K. Preparation of hydroxyapatite porous ceramics with different porous structures using a hydrothermal treatment with different aqueous solutions. J Ceram Soc Jpn. 2008;116:6–9.

    Article  Google Scholar 

  26. Kamitakahara M, Enari Y, Watanabe N, Ioku K. Morphology and composition of hydroxyapatite particles synthesized hydrothermally from tricalcium phosphates. Trans Mater Res Soc Jpn. 2011;36:405–8.

    Google Scholar 

  27. Goto T, Kim IY, Kikuta K, Ohtsuki C. Comparative study of hydroxyapatite formation from α-and β-tricalcium phosphates under hydrothermal conditions. J Ceram Soc Jpn. 2012;120:131–7.

    Article  Google Scholar 

  28. Ioku K, Murakami T, Ikuma Y, Yoshimura M. Preparation of microstructure-controlled porous hydroxyapatite-β-tricalcium phosphate composites by reaction sintering. J Ceram Soc Jpn. 1992;100:1015–9 (in Japanese).

    Article  Google Scholar 

  29. Ishikawa K, Ducheyne P, Radin S. Determination of the Ca/P ratio in calcium-deficient hydroxyapatite using X-ray diffraction analysis. J Mater Sci Mater Med. 1993;4:165–8.

    Article  Google Scholar 

  30. Monma H. Preparation of octacalcium phosphate by the hydrolysis of α-tricalcium phosphate. J Mater Sci. 1980;15:2428–34.

    Article  Google Scholar 

  31. Kamitakahara M, Ito N, Murakami S, Watanabe N, Ioku K. Hydrothermal synthesis of hydroxyapatite from octacalcium phosphate: effect of hydrothermal temperature. J Ceram Soc Jpn. 2009;117:385–7.

    Article  Google Scholar 

  32. Ito N, Kamitakahara M, Murakami S, Watanabe N, Ioku K. Hydrothermal synthesis and characterization of hydroxyapatite from octacalcium phosphate. J Ceram Soc Jpn. 2010;118:762–6.

    Article  Google Scholar 

  33. Okada S, Oaki Y, Komotori J, Imai H. Control of cellular activity of osteoblastic cells with microtopography of biphasic calcium phosphate scaffolds. J Ceram Soc Jpn. 2011;119:635–9.

    Article  Google Scholar 

  34. Choi CH, Hagvall SH, Wu BM, Dunn JC, Beygui RE. Cell interaction with three-dimensional sharp-tip nanotopography. Biomaterials. 2007;28:1672–9.

    Article  Google Scholar 

  35. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667–81.

    Article  Google Scholar 

  36. Tagaya M, Ikoma T, Takemura T, Hanagata N, Yoshioka T, Tanaka J. Effect of interfacial proteins on osteoblast-like cell adhesion to hydroxyapatite nanocrystals. Langmuir. 2011;27:7645–53.

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by JSPS KAKENHI (21300175, 23760630). We are grateful for the experimental support of Prof. M. Kawashita of Tohoku University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanobu Kamitakahara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamitakahara, M., Uno, Y. & Ioku, K. Behavior of osteoblast-like cells on calcium-deficient hydroxyapatite ceramics composed of particles with different shapes and sizes. J Mater Sci: Mater Med 25, 239–245 (2014). https://doi.org/10.1007/s10856-013-5063-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5063-6

Keywords

Navigation