Skip to main content

Advertisement

Log in

Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of this study was to characterize the physicochemical properties of bacterial cellulose (BC) membranes functionalized with osteogenic growth peptide (OGP) and its C-terminal pentapeptide OGP[10–14], and to evaluate in vitro osteoinductive potential in early osteogenesis, besides, to evaluate cytotoxic, genotoxic and/or mutagenic effects. Peptide incorporation into the BC membranes did not change the morphology of BC nanofibers and BC crystallinity pattern. The characterization was complemented by Raman scattering, swelling ratio and mechanical tests. In vitro assays demonstrated no cytotoxic, genotoxic or mutagenic effects for any of the studied BC membranes. Culture with osteogenic cells revealed no difference in cell morphology among all the membranes tested. Cell viability/proliferation, total protein content, alkaline phosphatase activity and mineralization assays indicated that BC-OGP membranes enabled the highest development of the osteoblastic phenotype in vitro. In conclusion, the negative results of cytotoxicity, genotoxicity and mutagenicity indicated that all the membranes can be employed for medical supplies, mainly in bone tissue engineering/regeneration, due to their osteoinductive properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Czaja W, Romanovicz D, Brown RM. Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose. 2004;11:403–11.

    Article  CAS  Google Scholar 

  2. Bodhibukkana C, Srichana T, Kaewnopparat S, Tangthong N, Bouking P, Martin GP, Suedee R. Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol. J Control Release. 2006;113:43–56.

    Article  CAS  Google Scholar 

  3. Mayall RC, Mayall AC, Mayall LC, Rocha HC, Marques LC. Tratamento das úlceras tróficas dos membros com um novo substituto de pele. Rev Bras Cir. 1990;80:257–83.

    Google Scholar 

  4. Fontana JD, de Souza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, de Souza SJ, Narcisco GP, Bichara JA, Farah LF. Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol. 1990;24–25:253–64.

    Article  Google Scholar 

  5. Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed. 2005;44:3358–93.

    Article  CAS  Google Scholar 

  6. Bodin A, Concaro S, Brittberg M, Gatenholm P. Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med. 2007;1:406–8.

    Article  CAS  Google Scholar 

  7. Fang B, Wan YZ, Tang TT, Gao C, Dai KR. Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng Part A. 2009;15:1091–8.

    Article  CAS  Google Scholar 

  8. Wiegand C, Elsner P, Hipler UC, Klemm D. Protease and ROS activities influenced by a composite of bacterial cellulose and collagen type I in vitro. Cellulose. 2006;13:689–96.

    Article  CAS  Google Scholar 

  9. Chen YM, Xi TF, Zheng YD, Guo TT, Hou JQ, Wan YZ, Gao C. In vitro cytotoxicity of bacterial cellulose scaffolds used for tissue-engineered bone. J Bioact Compat Polym. 2009;24:137–45.

    Article  CAS  Google Scholar 

  10. Backdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P. Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials. 2006;27:2141–9.

    Article  Google Scholar 

  11. Wolff LF, Mullally B. New clinical materials and techniques in guided tissue regeneration. Int Dent J. 2000;50:235–44.

    Article  CAS  Google Scholar 

  12. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.

    Article  CAS  Google Scholar 

  13. Brager MA, Patterson MJ, Connolly JF, Nevo Z. Osteogenic growth peptide normally stimulated by blood loss and marrow ablation has local and systemic effects on fracture healing in rats. J Orthop Res. 2000;18:133–9.

    Article  CAS  Google Scholar 

  14. Bab I, Gazit D, Chorev M, Muhlrad A, Shteyer A, Greenberg Z, Namdar M, Kahn A. Histone H4-related osteogenic growth peptide (OGP): a novel circulating stimulator of osteoblastic activity. EMBO J. 1992;11:1867–73.

    CAS  Google Scholar 

  15. Bab I, Chorev M. Osteogenic growth peptide: from concept to drug design. Biopolymers. 2002;66:33–48.

    Article  CAS  Google Scholar 

  16. Chen YC, Bab I, Mansur N, Muhlrad A, Shteyer A, Namdar-Attar M, Gavish H, Vidson M, Chorev M. Structure–bioactivity of C-terminal pentapeptide of osteogenic growth peptide [OGP(10-14)]. J Pept Res. 2000;56:147–56.

    Article  CAS  Google Scholar 

  17. Hui Z, Yu L, Xiaoli Y, Xiang H, Fan Z, Ningbo H, Zhigang Y, Ping L, Yanhong Z, Qingjun M. C-terminal pentapeptide of osteogenic growth peptide regulates hematopoiesis in early stage. J Cell Biochem. 2007;101:1423–9.

    Article  Google Scholar 

  18. Chen ZX, Chang M, Peng YL, Zhao L, Zhan YR, Wang LJ, Wang R. Osteogenic growth peptide C-terminal pentapeptide [OGP(10-14)] acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Regul Pept. 2007;142:16–23.

    Article  CAS  Google Scholar 

  19. Vanella L, Kim DH, Asprinio D, Peterson SJ, Barbagallo I, Vanella A, Goldstein D, Ikehara S, Kappas A, Abraham NG. HO-1 expression increases mesenchymal stem cell-derived osteoblasts but decreases adipocyte lineage. Bone. 2010;46:236–43.

    Article  CAS  Google Scholar 

  20. Stewart JM, Young JD. Solid phase peptide synthesis. 2nd ed. Rockford, Illinois: Pierce Chemical Company; 1984.

    Google Scholar 

  21. Chan WC, White PD. Fmoc solid phase peptide synthesis: a practical approach. New York: Oxford University Press; 2000.

    Google Scholar 

  22. Kaiser E, Colescot RL, Bossinge CD, Cook PI. Color test for detection of free terminal amino groups in solid-phase synthesis of peptides. Anal Biochem. 1970;34:595–8.

    Article  CAS  Google Scholar 

  23. Spreafico A, Frediani B, Capperucci C, Leonini A, Gambera D, Ferrata P, Rosini S, Di Stefano A, Galeazzi M, Marcolongo R. Osteogenic growth peptide effects on primary human osteoblast cultures: potential relevance for the treatment of glucocorticoid-induced osteoporosis. J Cell Biochem. 2006;98:1007–20.

    Article  CAS  Google Scholar 

  24. Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.

    Article  CAS  Google Scholar 

  25. de Oliveira PT, Nanci A. Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. Biomaterials. 2004;25(3):403–13.

    Article  Google Scholar 

  26. Nanci A, Zalzal S, Gotoh Y, McKee MD. Ultrastructural characterization and immunolocalization of osteopontin in rat calvarial osteoblast primary cultures. Microsc Res Tech. 1995;33:214–31.

    Article  Google Scholar 

  27. Irie K, Zalzal S, Ozawa H, McKee MD, Nanci A. Morphological and immunocytochemical characterization of primary osteogenic cell cultures derived from fetal rat cranial tissue. Anat Rec. 1998;252:554–67.

    Article  CAS  Google Scholar 

  28. Moura J, Teixeira LN, Ravagnani C, Peitl O, Zanotto ED, Beloti MM, Panzeri H, Rosa AL, de Oliveira PT. In vitro osteogenesis on a highly bioactive glass-ceramic (Biosilicate®). J Biomed Mater Res-Part A. 2007;82:545–57.

    Article  Google Scholar 

  29. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  CAS  Google Scholar 

  30. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.

    CAS  Google Scholar 

  31. Gregory CA, Gunn WG, Peister A, Prockop DJ. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem. 2004;329:77–84.

    Article  CAS  Google Scholar 

  32. Wei B, Yang G, Hong F. Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym. 2011;84:533–8.

    Article  CAS  Google Scholar 

  33. Barud HS, de Araujo AM, Santos DB, de Assuncao RMN, Meireles CS, Cerqueira DA, Rodrigues G, Ribeiro CA, Messaddeq Y, Ribeiro SJL. Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochim Acta. 2008;471:61–9.

    Article  CAS  Google Scholar 

  34. Wiley JH, Atalla RH. Band assignments in the raman spectra of celluloses. Carbohydr Res. 1987;160:113–29.

    Article  CAS  Google Scholar 

  35. Schenzel K, Fischer S, Brendler E. New method for determining the degree of cellulose I crystallinity by means of FT Raman spectroscopy. Cellulose. 2005;12:223–31.

    Article  CAS  Google Scholar 

  36. Socrates G. Infrared and Raman characteristic group frequencies: tables and charts. 3rd ed. New York: Wiley; 2001.

    Google Scholar 

  37. Charulatha V, Rajaram A. Influence of different crosslinking treatments on the physical properties of collagen membranes. Biomaterials. 2003;24:759–67.

    Article  CAS  Google Scholar 

  38. Barnes CP, Pemble CW, Brand DD, Simpson DG, Bowlin GL. Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol. Tissue Eng. 2007;13:1593–605.

    Article  CAS  Google Scholar 

  39. Greenberg Z, Gavish H, Muhlrad A, Chorev M, Shteyer A, AttarNamdar M, Tartakovsky A, Bab I. Isolation of osteogenic growth peptide from osteoblastic MC3T3 E1 cell cultures and demonstration of osteogenic growth peptide binding proteins. J Cell Biochem. 1997;65:359–67.

    Article  CAS  Google Scholar 

  40. Bab I, Gavish H, Namdar-Attar M, Muhlrad A, Greenberg Z, Chen Y, Mansur N, Shteyeu A, Chorev M. Isolation of mitogenically active C-terminal truncated pentapeptide of osteogenic growth peptide from human plasma and culture medium of murine osteoblastic cells. J Pept Res. 1999;54:408–14.

    Article  CAS  Google Scholar 

  41. Gabarin N, Gavish H, Muhlrad A, Chen YC, Namdar-Attar M, Nissenson RA, Chorev M, Bab I. Mitogenic G(i) protein-MAP kinase signaling cascade in MC3T3-E1 osteogenic cells: Activation by C-terminal pentapeptide of osteogenic growth peptide [OGP(10-14)] and attenuation of activation by cAMP. J Cell Biochem. 2001;81:594–603.

    Article  CAS  Google Scholar 

  42. Swarthout JT, Doggett TA, Lemker JL, Partridge NC. Stimulation of extracellular signal-regulated kinases and proliferation in rat osteoblastic cells by parathyroid hormone is protein kinase C-dependent. J Biol Chem. 2001;276:7586–92.

    Article  CAS  Google Scholar 

  43. Plotkin LI, Aguirre JI, Kousteni S, Manolagas SC, Bellido T. Bisphosphonates and estrogens inhibit osteocyte apoptosis via distinct molecular mechanisms downstream of extracellular signal-regulated kinase activation. J Biol Chem. 2005;280:7317–25.

    Article  CAS  Google Scholar 

  44. Schmitt DF, Frankos VH, Westland J, Zoetis T. Toxicologic evaluation of Cellulon(TM) fiber: genotoxicity, pyrogenicity, acute and subchronic toxicity. J Am Coll Toxicol. 1991;10:541–54.

    Article  CAS  Google Scholar 

  45. Moreira S, Silva NB, Almeida-Lima J, Rocha HA, Medeiros SR, Alves C Jr, Gama FM. BC nanofibres: in vitro study of genotoxicity and cell proliferation. Toxicol Lett. 2009;189:235–41.

    Article  CAS  Google Scholar 

  46. Jonas R, Farah LF. Production and application of microbial cellulose. Polym Degrad Stab. 1998;59:101–6.

    Article  CAS  Google Scholar 

  47. Cullen RT, Miller BG, Clark S, Davis JM. Tumorigenicity of cellulose fibers injected into the rat peritoneal cavity. Inhal Toxicol. 2002;14:685–703.

    Article  CAS  Google Scholar 

  48. Yalkinoglu AO, Schlehofer JR, zur Hausen H. Inhibition of N′-methyl-N′-nitro-N′-nitrosoguanidine-induced methotrexate and adriamycin resistance in CHO cells by adeno-associated virus type 2. Int J Cancer. 1990;45:1195–203.

    Article  CAS  Google Scholar 

  49. Sumantran VN, Boddul S, Koppikar SJ, Dalvi M, Wele A, Gaire V, Wagh UV. Differential growth inhibitory effects of W. somnifera root and E. officinalis fruits on CHO cells. Phytother Res. 2007;21:496–9.

    Article  Google Scholar 

  50. Saotome K, Morita H, Umeda M. Cytotoxicity test with simplified crystal violet staining method using microtitre plates and its application to injection drugs. Toxicol In Vitro. 1989;3:317–21.

    Article  CAS  Google Scholar 

  51. Helenius G, Backdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B. In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res Part A. 2006;76A:431–8.

    Article  CAS  Google Scholar 

  52. Pertile RA, Moreira S, Costa RM, Correia A, Guardao L, Gartner F, Vilanova M, Gama M. Bacterial cellulose: long-term biocompatibility studies. J Biomater Sci Polym Ed. 2011;. doi:10.1163/092050611X581516.

    Google Scholar 

  53. Greenberg Z, Chorev M, Muhlrad A, Shteyer A, Namdar M, Mansur N, Bab I. Mitogenic action of osteogenic growth peptide (OGP)-role of amino and carboxy-terminal regions and charge. Biochim Biophys Acta. 1993;1178:273–80.

    Article  CAS  Google Scholar 

  54. Bab IA, Einhorn TA. Polypeptide factors regulating osteogenesis and bone-marrow repair. J Cell Biochem. 1994;55:358–65.

    Article  CAS  Google Scholar 

  55. Robinson D, Bab I, Nevo Z. Osteogenic growth peptide regulates proliferation and osteogenic maturation of human and rabbit bone marrow stromal cells. J Bone Miner. Res. 1995;10:690–6.

    Article  CAS  Google Scholar 

  56. EN ISO. Biological evaluation of medical devices. Part. 1: Evaluation and testing, vol 10993-1:2003; 2003.

  57. Karsenty G. Transcriptional regulation of osteoblast differentiation during development. Front Biosci. 1998;3:d834–7.

    CAS  Google Scholar 

  58. Ciancaglini P, Simao AM, Camolezi FL, Millan JL, Pizauro JM. Contribution of matrix vesicles and alkaline phosphatase to ectopic bone formation. Braz J Med Biol Res. 2006;39:603–10.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Brazilian agencies FAPESP (grant numbers: 08-58776-6 and 09/09960-1) and CNPq is acknowledged. The authors wish to thank Prof. Dr. Luiz Geraldo Vaz of Department of Dental Materials and Prosthodontics, Dental School at Araraquara—UNESP for support in the mechanical tests and Mr. Roger Rodrigues Fernandes for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sybele Saska.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 89 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saska, S., Scarel-Caminaga, R.M., Teixeira, L.N. et al. Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering. J Mater Sci: Mater Med 23, 2253–2266 (2012). https://doi.org/10.1007/s10856-012-4676-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4676-5

Keywords

Navigation