Skip to main content
Log in

Mesoporous silica nanoparticle-functionalized poly(methyl methacrylate)-based bone cement for effective antibiotics delivery

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Poly(methyl methacrylate)-based bone cements are functionalized with mesoporous silica nanoparticles (MSN) to enable a highly efficient and sustained release of antibiotics to reduce the risk of post-operative joint infection. To overcome the limited drug release of 5% for only 1 day with the current commercial-grade bone cements, a 8 wt% MSN-formulated bone cement is able to increase the drug release efficiency by 14-fold and sustain the release for up to 80 days. The loaded MSN is suggested to build up an effective network of rod-shaped silica particles with uniformly arranged nanoporous channels, which is responsible for the effective drug diffusion and extend time-release to the external surfaces. MSN has no detrimental effect on the critical weight-bearing bending modulus and compression strength of bone cement. In vitro assay test results show a much sustained antibacterial effect and low cytotoxicity of MSN demonstrating the potential applicability of MSN-formulated bone cement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Harris WH, Sledge CB. The total hip and total knee replacement (part II). N Engl J Med. 1990;323(12):801–7.

    Article  CAS  Google Scholar 

  2. Shi ZL, Neoh KG, Kang ET, Wang W. Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials. 2006;27(11):2440–9.

    Article  CAS  Google Scholar 

  3. Fernandez M, Mendez JA, Vazquez B, San Roman J, Ginebra MP, Gil FJ, Manero JM, Planell JA. Acrylic-phosphate glasses composites as self-curing controlled delivery systems of antibiotics. J Mater Sci Mater Med. 2002;13(12):1251–7.

    Article  CAS  Google Scholar 

  4. Hanssen AD. Prophylactic use of antibiotic bone cement an emerging standard—in opposition. J Arthroplast. 2004;19(4):73–7.

    Article  Google Scholar 

  5. Nandi SK, Mukherjee P, Roy S, Kundu B, De DK, Basu D. Local antibiotic delivery systems for the treatment of osteomyelitis: a review. Mater Sci Eng C. 2009;29(8):2478–85.

    Article  CAS  Google Scholar 

  6. Krasko MY, Golenser J, Nyska A, Nyska M, Brin YS, Domb AJ. Gentamicin extended release from an injectable polymeric implant. J Control Release. 2007;117(1):90–6.

    Article  CAS  Google Scholar 

  7. Bourne RB. Prophylactic use of antibiotic bone cement: an emerging standard-in the affirmative. J Arthroplast. 2004;19(s4):69–72.

    Article  Google Scholar 

  8. Otsuk M, Nakahigashi Y, Matsud Y, Fox JL, Higuchi WI, Sugiyam Y. Effect of geometrical cement size on in vitro and in vivo indomethacin release from self-setting apatite cement. J Control Release. 1998;52(3):281–9.

    Article  Google Scholar 

  9. Hendriks JGE, Ensing GT, van Horn JR, Lubbers J, van der Mei H, Busscher HJ. Increased release of gentamicin from acrylic bone cements under influence of low-frequency ultrasound. J Control Release. 2003;92(3):369–74.

    Article  CAS  Google Scholar 

  10. Hendriks JGE, van Horn JR, van der Mei HC, Busscher HJ. Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. Biomaterials. 2004;25(3):545–56.

    Article  CAS  Google Scholar 

  11. Schade VL, Roukis TS. The role of polymethylmethacrylate antibiotic-loaded cement in addition to debridement for the treatment of soft tissue and osseous infections of the foot and ankle. J Foot Ankle Surg. 2010;49(1):55–62.

    Article  Google Scholar 

  12. van de Belt H, Neut D, Schenk W, van Horn JR, van der Mei HC, Busscher HJ. Infection of orthopedic implants and the use of antibiotic-loaded bone cements: a review. Acta Orthop Scand. 2001;72(6):557–71.

    Article  Google Scholar 

  13. Lewis G. Properties of antibiotic-loaded acrylic bone cements for use in cemented arthroplasties: a state-of-the-art review. J Biomed Mater Res B. 2009;89(2):558–74.

    Google Scholar 

  14. Anagnostakos K, Kelm J. Enhancement of antibiotic elution from acrylic bone cement. J Biomed Mater Res. 2009;90(1):467–75.

    Article  Google Scholar 

  15. Moojen DJF, Hentenaar B, Vogely HC, Verbout AJ, Castelein RM, Dhert WJA. In vitro release of antibiotics from commercial PMMA beads and articulating hip spacers. J Arthroplast. 2008;23(8):1152–6.

    Article  Google Scholar 

  16. Squire MW, Ludwig BJ, Thompson JR, Jagodzinski J, Hall D, Andes D. Premixed antibiotic bone cement: an in vitro comparison of antimicrobial efficacy. J Arthroplast. 2008;23(6):110–4.

    Article  Google Scholar 

  17. Padilla S, del Real RP, Vallet-Regí M. In vitro release of gentamicin from OHAp/PEMA/PMMA samples. J Control Release. 2002;83(3):343–52.

    Article  CAS  Google Scholar 

  18. Rasyid HN, van der Mei HC, Frijlink HW, Soegijoko S, van Horn JR, Busscher HJ, Neut D. Concepts for increasing gentamicin release from handmade bone cement beads. Acta Orthop. 2009;80(5):508–13.

    Article  Google Scholar 

  19. McLaren AC, McLaren SG, Smeltzer M. Xylitol and glycine fillers increase permeability of PMMA to enhance elution of daptomycin. Clin Orthop Relat Res. 2006;451:25–8.

    Article  Google Scholar 

  20. Slowing II, Trewyn BG, Giri S, Lin VSY. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater. 2007;17(8):1225–36.

    Article  CAS  Google Scholar 

  21. Xue JM, Shi M. PLGA/mesoporous silica hybrid structure for controlled drug release. J Control Release. 2004;98(2):209–17.

    Article  CAS  Google Scholar 

  22. Doadrio AL, Sousa EMB, Doadrio JC, Pariente JP, Izquierdo-Barba I, Vallet-Regí M. Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery. J Control Release. 2004;97(1):125–32.

    Article  CAS  Google Scholar 

  23. Han Y, Ying JY. Generalized fluorocarbon-surfactant-mediated synthesis of nanoparticles with various mesoporous structures. Angew Chem Int Ed. 2005;44(2):288–92.

    Article  CAS  Google Scholar 

  24. Shen SC, Chen FX, Chow PS, Phanapavudhikul P, Zhu KW, Tan RBH. Synthesis of SBA-15 mesoporous silica via dry-gel conversion route. Microporous Mesoporous Mater. 2006;92(1–3):300–8.

    Article  CAS  Google Scholar 

  25. Zhao D, Feng J, Huo Q, Melosh N, Fredirckson GH, Chmelka BF, Stucky GD. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science. 1998;279:548–52.

    Article  CAS  Google Scholar 

  26. Zhang X, Wyss UP, Pichora D, Goosen MEA. Biodegradable controlled antibiotic release devices for osteomyelitis: optimization of release properties. J Pharm Pharmacol. 1994;46(9):718–24.

    Article  CAS  Google Scholar 

  27. Puska MA, Kokkari AK, Närhi TO, Vallittu PK. Mechanical properties of oligomer-modified acrylic bone cement. Biomaterials. 2003;24(3):417–25.

    Article  CAS  Google Scholar 

  28. Stallmann HP, Faber C, Bronckers ALJJ, Amerongen AVN, Wuisman PILM. In vitro gentamicin release from commercially available calcium-phosphate bone substitutes influence of carrier type on duration of the release profile. BMC Musculoskelet Disord. 2006;7:18.

    Google Scholar 

  29. Gbureck U, Vorndran E, Müller FA, Barralet JE. Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices. J Control Release. 2007;122(2):173–80.

    Article  CAS  Google Scholar 

  30. Li HY, Chang J. Preparation, characterization and in vitro release of gentamicin from PHBV/wollastonite composite microspheres. J Control Release. 2005;107(3):463–73.

    Article  CAS  Google Scholar 

  31. Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5:23–36.

    Article  CAS  Google Scholar 

  32. van der Belt H, Neut D, Uhes DRA, Schenk W, van Horn JR, van der Mei HC, Busscher HJ. Surface roughness, porosity and wettability of gentamicin-loaded bone cement and their antibiotic release. Biomaterials. 2000;21:1981–7.

    Article  Google Scholar 

  33. Nugent M, McLaren A, Vernon B, McLemore R. Strength of antimicrobial bone cement decreases with increased poragen fraction. Clin Orthop Relat Res. 2010;468:2101–6.

    Article  Google Scholar 

  34. del Real RP, Padilla S, Vallet-Reg M. Gentamicin release from hydroxyapatite/poly(ethyl methacrylate)/poly(methyl methacrylate)composites. J Biomed Mater Res. 2000;52(1):1–7.

    Article  CAS  Google Scholar 

  35. Ger E, Dall D, Miles T, Forder A. Bone cement and antibiotics. S Afr Med J. 1977;51:276–9.

    CAS  Google Scholar 

  36. Marks KE, Nelson CL, Lautenschlager EP. Antibiotic-impregnated acrylic bone cement. J Bone Joint Surg Am. 1976;58:358–64.

    CAS  Google Scholar 

  37. Lautenschlager EP, Jacobs JJ, Marshall GW, Meyer RP Jr. Mechanical properties of bone cements containing large doses of antibiotic powders. J Biomed Mater Res. 1976;10:929–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was generously supported by Institute of Chemical Engineering and Science, Agency of Science Technology and Research, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shou-Cang Shen or Reginald Beng Hee Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, SC., Ng, W.K., Shi, Z. et al. Mesoporous silica nanoparticle-functionalized poly(methyl methacrylate)-based bone cement for effective antibiotics delivery. J Mater Sci: Mater Med 22, 2283 (2011). https://doi.org/10.1007/s10856-011-4397-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-011-4397-1

Keywords

Navigation