Skip to main content

Advertisement

Log in

Strength of Antimicrobial Bone Cement Decreases with Increased Poragen Fraction

  • Symposium: Papers Presented at the 2009 Meeting of the Musculoskeletal Infection Society
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

Adding soluble particulate poragens to antimicrobial-loaded bone cement increases the permeability of the bone cement and increases the antimicrobial release, but the mechanical effect of adding poragens is not well known.

Questions/purposes

We therefore asked the following questions: (1) Does the poragen fraction in antimicrobial-loaded bone cement affect its antimicrobial release? (2) Does poragen fraction in antimicrobial-loaded bone cement affect its compressive strength; and (3) Does the effect on compressive strength change over time in elution?

Methods

Antimicrobial-loaded bone cement made in the proportions of 40 g polymer powder, 20 mL monomer liquid, 1 g tobramycin powder and one of six different doses of poragen powder (0, 1, 2, 4, 8, or 16 g of particulate xylitol per batch) was formed into standardized test cylinders and eluted for 30 days. We determined the cumulative recovered tobramycin and the change in compressive strength over 30 days of elution.

Results

Antimicrobial release progressively increased with increasing poragen fraction. Compressive strength progressively decreased with increasing poragen fraction and with increasing time in elution. Poragen fractions greater than 2 g per batch caused the compressive strength to decrease below 70 MPa over 30 days of elution.

Clinical Relevance

The use of poragens can increase elution of antimicrobials from antimicrobial-loaded bone cement. However, for implant fixation, to avoid deleterious reduction of compressive strength, the amount of poragen that can be added in addition to 1 g of antimicrobial powder may be limited to 2 g per batch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. American Society for Testing and Materials. Standard Specifications for Acrylic Bone Cement. F451-99. West Conshohocken, PA: American Society for Testing and Materials; 2002.

  2. Belkoff SM, Maroney M, Fenton DC, Mathis JM. An in vitro biomechanical evaluation of bone cements used in percutaneous vertebroplasty. Bone. 1999;25(2 Suppl 1):23S–26S.

    Article  CAS  PubMed  Google Scholar 

  3. Cui Q, Mihalko WM, Shields JS, Ries M, Saleh KJ. Antibiotic-impregnated cement spacers for the treatment of infection associated with total hip or knee arthroplasty. J Bone Joint Surg Am. 2007;89:871–882.

    Article  PubMed  Google Scholar 

  4. Diefenbeck M, Mückley T, Hofmann GO. Prophylaxis and treatment of implant-related infections by local application of antibiotics. Injury. 2006;37(2 Suppl 1):S95–S104.

    Article  PubMed  Google Scholar 

  5. Duncan CP, Masri BA. The role of antibiotic-loaded cement in the treatment of an infection after a hip replacement. Instr Course Lect. 1995;44:305–313.

    CAS  PubMed  Google Scholar 

  6. Fernandes PB, Ramer N, Rode RA, Freiberg L. Bioassay for A-56268 (TE-031) and identification of its major metabolite, 14-hydroxy-6-methyl erythromycin. Eur J Clin Microbiol Infect Dis. 1988;7:73–76.

    Article  CAS  PubMed  Google Scholar 

  7. Hanssen AD, Spangehl MJ. Practical applications of antibiotic-loaded bone cement for treatment of infected joint replacements. Clin Orthop Relat Res. 2004;427:79–85.

    Article  PubMed  Google Scholar 

  8. He Y, Trotignon JP, Loty B, Tcharkhtchi A, Verdu J. Effect of antibiotics on the properties of poly(methylmethacrylate)-based bone cement . J Biomed Mater Res. 2002;63:800–806.

    Article  CAS  PubMed  Google Scholar 

  9. International Organization for Standardization. Implants for Surgery—Acrylic Resin Cements. ISO 5833-2002. Geneva, Switzerland: International Organization for Standardization; 2002.

  10. Jiranek WA, Hanssen AD, Greenwald AS. Antibiotic-loaded bone cement for infection prophylaxis in total joint replacement. J Bone Joint Surg Am. 2006;88:2487–2500.

    Article  PubMed  Google Scholar 

  11. Kuechle DK, Landon GC, Musher DM, Noble PC. Elution of vancomycin, daptomycin, and amikacin from acrylic bone cement. Clin Orthop Relat Res. 1991;264:302–308.

    PubMed  Google Scholar 

  12. Lautenschlager EP, Jacobs JJ, Marshall GW, Meyer PR Jr. Mechanical properties of bone cements containing large doses of antibiotic powders. J Biomed Mater Res. 1976;10:929–938.

    Article  CAS  PubMed  Google Scholar 

  13. Lewis G, Bhattaram A. Influence of a pre-blended antibiotic (gentamicin sulfate powder) on various mechanical, thermal, and physical properties of three acrylic bone cements. J Biomater Appl. 2006;20:377–408.

    Article  CAS  PubMed  Google Scholar 

  14. Lewis G, Janna S. Estimation of the optimum loading of an antibiotic powder in an acrylic bone cement. Acta Orthopaedica 2006;77:622–627.

    Article  PubMed  Google Scholar 

  15. Makinen KK, Bennett CA, Hujoel PP, Isokangas PJ, Isotupa KP, Pape HR Jr, Makinen PL. Xylitol chewing gums and caries rates: a 40-month cohort study. J Dent Res. 1995;74:1904–1913.

    Article  CAS  PubMed  Google Scholar 

  16. McLaren AC, McLaren SG, Hickmon MK. Sucrose, xylitol, and erythritol increase PMMA permeability for depot antibiotics. Clin Orthop Relat Res. 2007;461:60–63.

    Article  PubMed  Google Scholar 

  17. McLaren AC, McLaren SG, McLemore R, Vernon BL. Particle size of fillers affects permeability of polymethylmethacrylate. Clin Orthop Relat Res. 2007;461:64–67.

    Article  CAS  PubMed  Google Scholar 

  18. McLaren AC, McLaren SG, Smeltzer M. Xylitol and glycine fillers increase permeability of PMMA to enhance elution of daptomycin. Clin Orthop Relat Res. 2006;451:25–28.

    Article  PubMed  Google Scholar 

  19. McLaren RL, McLaren AC, Vernon B. Generic Tobramycin elutes from bone cement faster than proprietary Tobramycin. Clin Orthop Relat Res. 2008;466:1372–1376

    Article  CAS  PubMed  Google Scholar 

  20. Osterman PA, Seligson D, Henry SL. Local antibiotic therapy for severe open fractures: a review of 1085 consecutive cases. J Bone Joint Surg Br. 1995;77:93–97.

    Google Scholar 

  21. van de Belt H, Neut D, Schenk W, van Horn JR, van der Mei HC, Busscher HJ. Staphylococcus aureus biofilm formation on different gentamicin-loaded polymethylmethacrylate bone cements. Biomaterials. 2001;22:1607–1611.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Himanshu Kaul BSE for assistance with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan McLemore PhD.

Additional information

All the authors received funding from the Herbert T. Lewis Fund in the Orthopaedic Research and Education Foundation.

This work was performed at Banner Good Samaritan Medical Center, Phoenix AZ and the Center for Interventional Biomaterials, Arizona State University, Tempe AZ.

About this article

Cite this article

Nugent, M., McLaren, A., Vernon, B. et al. Strength of Antimicrobial Bone Cement Decreases with Increased Poragen Fraction. Clin Orthop Relat Res 468, 2101–2106 (2010). https://doi.org/10.1007/s11999-010-1264-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-010-1264-1

Keywords

Navigation