Skip to main content
Log in

Reduction of Ni release and improvement of the friction behaviour of NiTi orthodontic archwires by oxidation treatments

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This work studies NiTi orthodontic archwires that have been treated using a new oxidation treatment for obtaining Ni-free surfaces. The titanium oxide on the surface significantly improves corrosion resistance and decreases nickel ion release, while barely affecting transformation temperatures. This oxidation treatment avoids the allergic reactions or toxicity in the surrounding tissues produced by the chemical degradation of the NiTi. In the other hand, the lack of low friction coefficient for the NiTi superelastic archwires makes difficult the optimal use of these materials in Orthodontic applications. In this study, the decrease of this friction coefficient has been achieved by means of oxidation treatment. Transformation temperatures, friction coefficient and ion release have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Duerig TW, Zadno R. Engineering aspects of shape memory alloys. London: Butterworth-Heinemann Ltd.; 1990. p. 124–32.

    Google Scholar 

  2. Tosho S. In: Funakubo H, editor. Shape memory alloys, vol 1. Tokyo: Gordon and Breach Science Publishers; 1984. p. 23–30.

  3. Perkins J. Shape memory effects in alloys. New York: Plenum Press; 1975. p. 12–24.

    Google Scholar 

  4. Purdy GR, Parr JG. Shape memory effect in NiTi alloys. Trans. AIME. 1981;6:23–5.

    Google Scholar 

  5. Michiardi A, Engel E, Aparicio C, Planell JA, Gil FJ. Oxidized NiTi surfaces enhance differentiation of osteoblast-like cells. J Biomed Mater Res. 2008;85A:108–14.

    Article  CAS  Google Scholar 

  6. Michiardi A, Aparicio C, Planell JA, Gil FJ. J Biomed Mater Res B. 2006;77B:249–56.

    Article  CAS  Google Scholar 

  7. Arciniegas M, Casals J, Manero JM, Peña J, Gil FJ. Study of hardness and wear behaviour of NiTi shape memory alloys. J Alloys Compd. 2008;460:213–9.

    Article  CAS  Google Scholar 

  8. Andreasen GF, Morrow RE. Laboratory and clinical analysis of nitinol wire. Am J Orthod. 1978;73:142–9.

    Article  CAS  Google Scholar 

  9. Andreasen GF. A clinical trial of alignment of teeth using a 0.019 inch thermal nitinol wire with a transition temperature range between 31°C and 45°C. Am J Orthod. 1980;78:528–36.

    Article  CAS  Google Scholar 

  10. Miura F, Mogi M, Ohura Y, Karibe M. The superelastic Japanese NiTi alloy wire for use in orthodontics. Am J Orthod Dentofac Orthop. 1988;94(2):89–96.

    Article  CAS  Google Scholar 

  11. Burstone CJ, Qin B, Morton JY. NiTi archwire a new orthodontic alloy. Am J Orthod. 1985;87(6):445–52.

    Article  CAS  Google Scholar 

  12. Suárez C, Vilar T, Gil J, Sevilla P. In vitro evaluation of surface topographic changes and nickel release of lingual orthodontic archwires. J Mater Sci Mater Med. 2010;21:675–83.

    Article  Google Scholar 

  13. Wever DJ. Electrochemical and surface characterization of a nickel–titanium alloy. Biomaterials. 1998;19:761–9.

    Article  CAS  Google Scholar 

  14. Gil FJ, Manero JM, Planell JA. Effect of grain size on the martensitic transformation in NiTi alloys. J Mater Sci. 1995;30:2526–30.

    Article  CAS  Google Scholar 

  15. Saburi T, Tatsumi T, Nenno S. Effects of heat treatment on mechanical behavior of Ti–Ni alloys. J Phys, ICOMAT-82, COLLOQUE C4. 1982; 261–6

  16. Chan CM, Trigwell S, Duerig T. Surf. Interface Anal. 1990;15:349–54.

    Google Scholar 

  17. Firstov GS, Vitchev RG, Kumar H, Blanpain B, Van Humbeek J. Surface oxidation of NiTi shape memory alloy. Biomaterials. 2002;23:4863–71.

    Article  CAS  Google Scholar 

  18. Armitage DA, Grant DM. Mater Sci Eng A. 2003;349:89–97.

    Article  Google Scholar 

  19. Li YH, Rong LJ, Li YY. J Alloys Compd. 2001;325:259–62.

    Article  CAS  Google Scholar 

  20. Itin VH, Gjunter VE, Shabalovskaya SA. Mechanical properties and shape memory of porous nitinol. Mater Charact. 1994;32:179–82.

    Article  CAS  Google Scholar 

  21. Gibson LJ. The mechanical behaviour of cancellous bone. J Biomech. 1995;18:317–28.

    Article  Google Scholar 

  22. Li YH, Rong LJ, Li YY. J Alloys Compd. 2002;345:271–4.

    Article  CAS  Google Scholar 

  23. Green SM, Grant DM, Wood JV. XPS characterization of surface modified Ni–Ti shape memory alloy. Mater Sci Eng A. 1997;224:21–5.

    Article  Google Scholar 

  24. Espinos JP, Fernandez A, Gonzalez-Elipe AR. Surf Sci. 1993;295:402–10.

    Article  CAS  Google Scholar 

  25. Gil FJ, Manero JM, Planell JA. J Mater Sci Mater Med. 1996;7:403–6.

    Article  CAS  Google Scholar 

  26. Gil FJ, Libenson C, Planell JA. J Mater Sci Mater Med. 1993;4:281–4.

    Article  CAS  Google Scholar 

  27. Shabalovskaya SA. Surface spectroscopic characterization of NiTi nearly equiatomic shape memory alloys for implants. J Vac Sci Technol A. 1995;13(5):2624–32.

    Article  CAS  Google Scholar 

  28. Gil FJ, Solano E, Pena J, Mendoza A. J Appl Biomater Biomech. 2004;2:151–5.

    CAS  Google Scholar 

  29. Gil FJ, Solano E, Campos A, Boccio F, Saez I, Alfonso MV, Planell JA. Improvement of the friction behaviour of NiTi orthodontic archwires by nitrogen diffusion. Biomed Mater Eng. 1998;8:335–42.

    CAS  Google Scholar 

  30. Huang HH, Chiu YH, Lee TH, Wu SC, Yang HW, Su KH, Hsu CC. Ion release from NiTi orthodontic wires in artificial saliva with various acidities. Biomaterials. 2003;24:3585–92.

    Article  CAS  Google Scholar 

  31. Peltonen L. Nickel sensitivity in the general population. Contact Dermat. 1979;5:27–32.

    Article  CAS  Google Scholar 

  32. Dunlap CL, Vincent SK, Barker BF. Allergic reaction to orthodontic wire: report case. JADA. 1989;11:449–50.

    Google Scholar 

  33. Cejna M, Virmani R, Jones R, Bergmeister H, Loewe C, Schroder M, Grgurin M, Lammer J. J Vasc Interv Radiol. 2001;12:351–9.

    Article  CAS  Google Scholar 

  34. Shabalovskaya SA, Anderegg JW. Surface spectroscopic characterization of TiNi nearly equiatomic shape memory alloys for implants. J Vasc Sci Technol A. 1995;13:2624–32.

    Article  CAS  Google Scholar 

  35. Sun ZL, Wataha JC, Hanks CT. Effects of metal ions on osteoblast-like cell metabolism and differentiation. J Biomed Mater Res. 1997;34:29–37.

    Article  CAS  Google Scholar 

  36. Wataha JC, O’dell NL, Singh BB, Ghazi M, Whitford GM, Lockwood PE. Relating nickel-induced tissue inflammation to nickel release in vivo. J Biomed Mater Res B. 2001;58:537–44.

    Article  CAS  Google Scholar 

  37. Albrektsson T, Branemark P-I, Hansson HA, Kasemo B, Larsson K, Lundstrom I, Mcqueen DH, Skalak R. The interface zone of inorganic implants in vivo: titanium implants in bone. Ann Biomed Eng. 1983;11:1–27.

    Article  CAS  Google Scholar 

  38. Cederbrant K, Andersson C, Andersson T, Marcusson-Stahl M, Hultman P. Int Arch Allergy Immunol. 2003;132:373–80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Gil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espinar, E., Llamas, J.M., Michiardi, A. et al. Reduction of Ni release and improvement of the friction behaviour of NiTi orthodontic archwires by oxidation treatments. J Mater Sci: Mater Med 22, 1119–1125 (2011). https://doi.org/10.1007/s10856-011-4292-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4292-9

Keywords

Navigation