Skip to main content

Advertisement

Log in

Investigation of the Dissolution–Reformation Cycle of the Passive Oxide Layer on NiTi Orthodontic Archwires

  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

Dissolution–reformation cycle of the passive oxide layer on the nickel–titanium (NiTi) orthodontic archwires was investigated, which has recently been recognized as one of the key parameters dictating the biocompatibility of archwires. Specifically, commercially available NiTi orthodontic archwires were immersed in artificial saliva solutions of different pH values (2.3, 3.3, and 4.3) for four different immersion periods: 1, 7, 14, and 30 days. Characterization of the virgin and tested samples revealed that the titanium oxide layer on the NiTi archwire surfaces exhibit a dissolution–reformation cycle within the first 14 days of the immersion period: the largest amount of Ni ion release occurred within the first week of immersion, while it significantly decreased during the reformation period from day 7 to day 14. Furthermore, the oxide layer reformation was catalyzed on the grooves within the peaks and valleys due to relatively larger surface energy of these regions, which eventually decreased the surface roughness significantly within the reformation period. Overall, the current results clearly demonstrate that the analyses of dissolution–reformation cycle of the oxide layer in orthodontic archwires, surface roughness, and ion release behavior constitute utmost importance in order to ensure both the highest degree of biocompatibility and an efficient medical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. 3M Unitek Nitinol heat-activated archwires with 0.36 mm diameter were used in the experiments.

References

  1. Tian H, Schryvers D, Liu D, Jiang Q, Van Humbeeck J (2011) Stability of Ni in nitinol oxide surfaces. Acta Biomater 7(2):892–899

    Article  Google Scholar 

  2. Toker SM, Canadinc D, Maier HJ, Birer O (2014) Evaluation of passive oxide layer formation-biocompatibility relationship in NiTi shape memory alloys: geometry and body location dependency. Mater Sci Eng C 36:118–129

    Article  Google Scholar 

  3. Trepanier C, Venugopalan R, Pelton AR (2000) Corrosion resistance and biocompatibility of passivated NiTi. Springer, Berlin Heidelberg

    Book  Google Scholar 

  4. Zhu L, Trépanier C, Pelton AR, Fino J (2003) Oxidation of nitinol and its effect on corrosion resistance. Med Device Mater. doi:10.1361/cp2003mpmd156

    Google Scholar 

  5. Machado LG, Savi MA (2003) Medical applications of shape memory alloys. Braz J Med Biol Res 36(6):683–691

    Article  Google Scholar 

  6. Shabalovskaya SA, Rondelli GC, Undisz AL, Anderegg JW, Burleigh TD, Rettenmayr ME (2009) The electrochemical characteristics of native Nitinol surfaces. Biomaterials 30(22):3662–3671

    Article  Google Scholar 

  7. Duerig T (2002) The use of superelasticity in modern medicine. MRS Bull 27(02):101–104

    Article  Google Scholar 

  8. Ryhänen J, Niemi EUOO, Serlo W, Niemelä E, Sandvik P, Pernu H, Salo T (1997) Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures. J Biomed Mater Res 35(4):451–457

    Article  Google Scholar 

  9. Toker SM, Canadinc D (2014) Evaluation of biocompatibility of NiTi dental wires: a comparison of laboratory experiments and clinical conditions. Mater Sci Eng C 40:142–147

    Article  Google Scholar 

  10. Wever DJ, Veldhuizen AG, Sanders MM, Schakenraad JM, Van Horn JR (1997) Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy. Biomaterials 18(16):1115–1120

    Article  Google Scholar 

  11. Otsuka K, Ren X (1999) Recent developments in the research of shape memory alloys. Intermetallics 7(5):511–528

    Article  Google Scholar 

  12. Petrini L, Migliavacca F (2011) Biomedical applications of shape memory alloys. J Metall. doi:10.1155/2011/501483

    Google Scholar 

  13. Shabalovskaya SA, Tian H, Anderegg JW, Schryvers DU, Carroll WU, Van Humbeeck J (2009) The influence of surface oxides on the distribution and release of nickel from Nitinol wires. Biomaterials 30(4):468–477

    Article  Google Scholar 

  14. Hu T, Chu C, Xin Y, Wu S, Yeung KW, Chu PK (2010) Corrosion products and mechanism on NiTi shape memory alloy in physiological environment. J Mater Res 25:350–358

    Article  Google Scholar 

  15. Li X, Wang J, Han EH, Ke W (2007) Influence of fluoride and chloride on corrosion behavior of NiTi orthodontic wires. Acta Biomater 3(5):807–815

    Article  Google Scholar 

  16. Ma FY (2012) Corrosive effects of chlorides on metals. INTECH Open Access Publisher, Rijeka

    Book  Google Scholar 

  17. Uzer B, Gumus B, Toker SM, Sahbazoglu D, Saher D, Yildirim C, Polat-Altintas S, Canadinc D (2016) A critical approach to the biocompatibility testing of NiTi orthodontic archwires. Int J Metall Metal Phys 1:1–7

    Google Scholar 

  18. Wang J, Li N, Rao G, Han EH, Ke W (2007) Stress corrosion cracking of NiTi in artificial saliva. Dent Mater 23(2):133–137

    Article  Google Scholar 

  19. Castro RM, Smith Neto P, Horta MCR, Pithon MM, Oliveira DD (2013) Comparison of static friction with self-ligating, modified slot design and conventional brackets. J Appl Oral Sci 21(4):314–319

    Article  Google Scholar 

  20. Bourauel C, Fries T, Drescher D, Plietsch R (1998) Surface roughness of orthodontic wires via atomic force microscopy, laser specular reflectance, and profilometry. Eur J Orthod 20(1):79–92

    Article  Google Scholar 

  21. Hanawa T (1999) In vivo metallic biomaterials and surface modification. Mater Sci Eng, A 267(2):260–266

    Article  Google Scholar 

  22. Kim H, Johnson JW (1999) Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires. Angle Orthod 69(1):39–44

    Google Scholar 

  23. Huang HH (2005) Surface characterizations and corrosion resistance of nickel-titanium orthodontic archwires in artificial saliva of various degrees of acidity. J Biomed Mater Res 74(4):629–639

    Article  Google Scholar 

  24. Schipper RG, Silletti E, Vingerhoeds MH (2007) Saliva as research material: biochemical, physicochemical and practical aspects. Arch Oral Biol 52(2):1114–1135

    Article  Google Scholar 

  25. Dodds MW, Johnson DA, Yeh CK (2005) Health benefits of saliva: a review. J Dent 33(3):223–233

    Article  Google Scholar 

  26. Diaz-Arnold AM, Marek CA (2002) The impact of saliva on patient care: a literature review. J Prosthet Dent 88(3):337–343

    Article  Google Scholar 

  27. Chicharro JL, Lucía A, Pérez M, Vaquero AF, Ureña R (1998) Saliva composition and exercise. Sports Med 26(1):17–27

    Article  Google Scholar 

  28. Chiappin S, Antonelli G, Gatti R, Elio F (2007) Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clin Chim Acta 383(1):30–40

    Article  Google Scholar 

  29. Onal O, Gumus B, Aksoy B, Gerstein G, Alaca BE, Maier HJ, Canadinc D (2016) Micro-scale cyclic bending response of NiTi shape memory ally. Mater Trans 57(3):472–475

    Article  Google Scholar 

  30. Corbett RA (2005) Corrosion tests and standards: application and interpretation-second edition. ASTM International, West Conshohocken

    Google Scholar 

  31. Huang HH, Chiu YH, Lee TH, Wu SC, Yang HW, Su KH, Hsu CC (2003) Ion release from NiTi orthodontic wires in artificial saliva with various acidities. Biomaterials 24(20):3585–3592

    Article  Google Scholar 

  32. Kuhta M, Pavlin D, Slaj M, Varga S, Lapter-Varga M, Slaj M (2009) Type of archwire and level of acidity: effects on the release of metal ions from orthodontic appliances. Angle Orthod 79(1):102–110

    Article  Google Scholar 

  33. Firstov GS, Vitchev RG, Kumar H, Blanpain B, Van Humbeeck J (2002) Surface oxidation of NiTi shape memory alloy. Biomaterials 23(24):4863–4871

    Article  Google Scholar 

  34. Ryhänen J (1999) Biocompatibility evaluation of nickel-titanium shape memory metal alloy. Springer, Berlin

    Google Scholar 

  35. Huang HH (2003) Corrosion resistance of stressed NiTi and stainless steel orthodontic wires in acid artificial saliva. J Biomed Mater Res Part A 66(4):829–839

    Article  Google Scholar 

  36. Trepanier C, Tabrizian M, Yahia LH, Bilodeau L, Piron DL (1998) Effect of modification of oxide layer on NiTi stent corrosion resistance. J Biomed Mater Res 43(4):433–440

    Article  Google Scholar 

Download references

Acknowledgements

D. Canadinc and O. Birer acknowledge the financial support provided by the Turkish Academy of Sciences (TÜBA) within the Outstanding Young Scientist Program (GEBİP). B. Uzer acknowledges the financial support provided by the Scientific and Technological Research Council of Turkey (TÜBİTAK) within the National Graduate Student Fellowship Program 2211. The SEM, EDX, AFM, and XPS analyses were carried out at Koç University Surface Science and Technology Center (KUYTAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Canadinc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzer, B., Birer, O. & Canadinc, D. Investigation of the Dissolution–Reformation Cycle of the Passive Oxide Layer on NiTi Orthodontic Archwires. Shap. Mem. Superelasticity 3, 264–273 (2017). https://doi.org/10.1007/s40830-017-0114-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-017-0114-3

Keywords

Navigation