Skip to main content
Log in

Biomimetic calcium phosphate coating on Ti wires versus flat substrates: structure and mechanism of formation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Biomimetic calcium phosphate (Ca–P) coatings improve the osteoconductivity of orthopedic implants and show promise as slow delivery systems for growth factors. This paper compares the structure and composition of biomimetic coatings on flat titanium coupons and on Ti wires/thin pins that are often used as model implants in small animal in vivo models. Ca–P coatings were grown on alkali-treated Ti substrates using a two-step deposition procedure. The coatings on wires consisted of a surface layer of octacalcium phosphate (OCP) and a layer of Ca-deficient hydroxyapatite (CDHA) underneath. The coating thickness and the proportion of CDHA decreased with increasing wire diameter. The coatings on flat coupons were the thinnest, and were comprised almost entirely of OCP. A mechanism of successive formation of the CDHA and OCP phases based on the interplay between nucleation, growth and hydrolysis of OCP crystals as a function of changing local supersaturation is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jaffe WL, Scott DF. Current concepts review: total hip arthroplasty with hydroxyapatite-coated prostheses. J Bone Joint Surg. 1996;78:1918–34.

    CAS  PubMed  Google Scholar 

  2. Shepperd JAN, Apthorp H. A contemporary snapshot of the use of hydroxyapatite coating in orthopaedic surgery. J Bone Joint Surg [Br]. 2005;87-B:1046–9.

    Google Scholar 

  3. Mao C, Li H, Cui F, Ma C, Feng Q. Oriented growth of phosphates on polycrystalline titanium in a process mimicking biomineralization. J Crystal Growth. 1999;206:308–21.

    Article  CAS  ADS  Google Scholar 

  4. Li F, Feng QL, Cui FZ, Li HD, Schubert H. A simple biomimetic method for calcium phosphate coating. Surf Coat Technol. 2002;154:88–93.

    Article  CAS  Google Scholar 

  5. Zhang Q, Leng Y, Xin R. A comparative study of electrochemical deposition and biomimetic deposition of calcium phosphate on porous titanium. Biomaterials. 2005;26:2857–65.

    Article  CAS  PubMed  Google Scholar 

  6. Yan WQ, Nakamura T, Kawanabe K, Nishigochi S, Oka M, Kokubo T. Apatite layer-coated titanium for use as bone bonding implants. Biomaterials. 1997;18:1185–90.

    Article  CAS  PubMed  Google Scholar 

  7. Barrère F, Layrolle P, van Blitterswijk CA, de Groot K. Biomimetic coatings on titanium: a crystal growth study of octacalcium phosphate. J Mater Sci: Mater Med. 2001;12:529–34.

    Article  Google Scholar 

  8. Barrère F, Layrolle P, van Blitterswijk CA, de Groot K. Biomimetic calcium phosphate coatings on Ti6Al4 V: a crystal growth study of octacalcium phosphate and inhibition by Mg2+ and HCO -3 . Bone. 1999;25:107S–11S.

    Article  PubMed  Google Scholar 

  9. Habibovic P, Barrère F, van Blitterswijk CA, de Groot K, Layrolle P. Biomimetic hydroxyapatite coating on metal implants. J Am Ceram Soc. 2002;85:517–22.

    Article  CAS  Google Scholar 

  10. Sovak G, Weiss A, Gotman I. Osseointegration of Ti-6Al-4 V alloy implants with a novel titanium nitride coating in the rat femur. J Bone Joint Surg [Br]. 2000;82-B:290–6.

    Article  Google Scholar 

  11. Rammelt S, Schulze E, Bernhardt R, Hanisch U, Scharnweber D, Worch H, et al. Coating of titanium implants with type-I collagen. J Orthop Res. 2004;22:1025–34.

    Article  CAS  PubMed  Google Scholar 

  12. Rammelt S, Illert T, Bierbaum S, Scharnweber D, Zwipp H, Schneiders W. Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials. 2006;27:5561–71.

    Article  CAS  PubMed  Google Scholar 

  13. Akca K, Sarac E, Baysal U, Fanuscu M, Chang T-L, Cehreli M. Micro-morphologic changes around biophysically-stimulated titanium implants in ovariectomized rats. Head Face Med. 2007;3:28–34.

    Article  PubMed  Google Scholar 

  14. Ito S, Takebe J. Longitudinal observation of thin hydroxyapatite layers formed on anodic oxide titanium implants after hydrothermal treatment in a rat maxilla model. Prosthodont Res Pract. 2008;7:82–8.

    Article  Google Scholar 

  15. Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, De Groot K. The role of hydrated silica, titania, and alumina in inducing apatite on implants. J Biomed Mater Res. 1994;28:7–15.

    Article  CAS  PubMed  Google Scholar 

  16. Kim HM, Miyaji F, Kokubo T, Nishiguchi S, Nakamura T. Graded surface structure of bioactive titanium prepared by chemical treatment. J Biomed Mater Res. 1999;45:100–7.

    Article  CAS  PubMed  Google Scholar 

  17. Feng QL, Wang H, Cui FZ, Kim TN. Controlled crystal growth of calcium phosphate on titanium surface by NaOH-treatment. J Crystal Growth. 1999;200:550–7.

    Article  CAS  ADS  Google Scholar 

  18. Drouet C, Bosc F, Banu M, Largeot C, Combes C, Dechambre G, et al. Nanocrystalline apatites: from powders to biomaterials. Powder Technol. 2009;190:118–22.

    Article  CAS  Google Scholar 

  19. Sauer GR, Wuthier RE. Fourier transform infrared characterization of mineral phases formed during induction of mineralization by collagenase-released matrix vesicles in vitro. J Bio Chem. 1988;263:13718–24.

    CAS  Google Scholar 

  20. Xie J, Luan BL. Nanometer-scale surface modification of Ti6Al4V alloy for orthopedic applications. J Biomed Mater Res. 2008;84A:63–72.

    Article  CAS  Google Scholar 

  21. Mavropoulos E, Rossi AM, Da Rocha NCC, Soares GA, Moreira JC, Moure GT. Dissolution of calcium-deficient hydroxyapatite synthesized at different conditions. Mater Character. 2003;50:203–7.

    Article  CAS  Google Scholar 

  22. Ishikawa K, Ducheyne P, Radin S. Determination of the Ca/P ratio in calcium-deficient hydroxyapatite using X-ray diffraction analysis. J Mater Sci: Mater Med. 1993;4:165–8.

    Article  CAS  Google Scholar 

  23. Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury. 2000;31:S-D37–47.

    Article  Google Scholar 

  24. Brown WE, Eidelman N, Tomazic B. Octacalcium phosphate as a precursor in biomineral formation. Adv Dent Res. 1987;1:306–13.

    CAS  PubMed  Google Scholar 

  25. Bodier-Houllé P, Steuer P, Voegel JC, Cuisinier FJG. First experimental evidence for human dentine crystal formation involving conversion of octacalcium phosphate to hydroxyapatite. Acta Cryst. 1998;D54:1377–81.

    Google Scholar 

  26. Elliott JC. Structure and chemistry of the apatite and other calcium orthophosphates. Amsterdam: Elsevier; 1994.

    Google Scholar 

  27. LeGeros RZ, Daculsi G, Orly I, Abergas T, Torres W. Solution-mediated transformation of octacalcium phosphate (OCP) to apatite. Scan Micr. 1989;3:129–38.

    CAS  Google Scholar 

  28. Suzuki O, Kamakura S, Katagiri T, Nakamura M, Zhao B, Honda Y, et al. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomaterials. 2006;27:2671–81.

    Article  CAS  PubMed  Google Scholar 

  29. Nelson DGA, McLean JD. High-resolution electron microscopy of octacalcium phosphate and its hydrolysis products. Calcif Tissue Int. 1984;36:219–32.

    Article  CAS  PubMed  Google Scholar 

  30. Nývlt J, Söhnel O, Matuchová M, Broul M. The kinetics of industrial crystallization. Prague: Academia Prague; 1985.

    Google Scholar 

  31. Terpstra RA, Bennema P. Crystal morphology of octacalcium phosphate: theory and observation. J Crystal Growth. 1987;82:416–26.

    Article  CAS  ADS  Google Scholar 

  32. Shirkhanzadeh M. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes. J Mater Sci: Mater Med. 1998;9:67–72.

    Article  CAS  Google Scholar 

  33. Savvin Yu N, Kryzhanovskaya AS, Tolmachev AV. Effect of growth conditions on the structural properties of calcium phosphate coatings prepared in the system CaCl2–KH2PO4–KOH–HCl–H2O. Inorg Mater. 2005;41:864–8.

    Article  CAS  Google Scholar 

  34. Mullin JW, Raven KD. Nucleation in agitated solutions. Nature. 1961;190:251.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Israel Science Foundation (ISF) through research grant No. 1193/05, by the Commission of the European Communities, Network of Excellence (EXCELL) No. 515703, and by Israel Ministry of Science, Culture and Sport in the frames of the Fellowship Program for Advancement of Women in Science. The authors are grateful to Prof. E.Y. Gutmanas, Faculty of Materials Engineering, Technion, for his assistance and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Gotman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiner, T., Gotman, I. Biomimetic calcium phosphate coating on Ti wires versus flat substrates: structure and mechanism of formation. J Mater Sci: Mater Med 21, 515–523 (2010). https://doi.org/10.1007/s10856-009-3906-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3906-y

Keywords

Navigation