Skip to main content
Log in

Physicochemical Properties and Osseointegration of Titanium Implants with Bioactive Calcium Phosphate Coatings Produced by Detonation Spraying

  • Published:
Inorganic Materials Aims and scope

Abstract—

Detonation spraying is thought to be a promising approach to producing calcium phosphate bioceramic coatings on various implants owing to the possibility of ensuring conditions that minimize undesirable thermal effects. In this work, this method has been used to produce coatings (up to ≈100 μm in thickness) based on nonstoichiometric hydroxyapatite (HA) with a Ca/P atomic ratio in the range Ca/P ≈ 1.45–1.50 on the surface of titanium substrates. Detailed characterization of the coatings by X-ray diffraction, Raman spectroscopy, and optical and electron microscopy has shown that, under the conditions of this study, the parent HA underwent a number of changes during the spraying process, which led to the formation of tricalcium phosphates (TCPs) (α-TCP and β-TCP) along with HA and amorphous phosphates. As a result, the Ca/P stoichiometric ratio increased (to Ca/P ≈ 1.65–1.67). Osseointegration effectiveness was evaluated in vivo by comparing biological reactions with control specimens (uncoated surgical screws) and coated screws using laboratory animals (Wistar rats). Histological and tomographic examination of ante- and postmortem materials showed that the coatings stimulated chondrogenic osteogenesis in the implant/bone contact region. These effects did not show up until 60 ± 5 days after implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Safronova, T.V., Inorganic materials for regenerative medicine, Inorg. Mater., 2021, vol. 57, no. 5, pp. 443–474.

    Article  CAS  Google Scholar 

  2. Dorozhkin, S.V., Functionalized calcium orthophosphates (CaPO4) and their biomedical applications, J. Mater. Chem. B, 2019, vol. 7, no. 47, pp. 7471–7489.

    Article  CAS  Google Scholar 

  3. Lukina, I.S., Zaitsev, V.V., Erkhova, L.V., Krut’ko, D.P., Gavryushenko, N.S., and Lemenovskii, D.A., Macroporous calcium phosphate matrices prepared using the technology of self-setting cements, Inorg. Mater., 2021, vol. 57, no. 1, pp. 78–85.

    Article  CAS  Google Scholar 

  4. Combes, Ch., Cazalbou, S., and Rey, Ch., Apatite biominerals, Minerals, 2016, vol. 6, no. 34, pp. 1–25.

    Article  Google Scholar 

  5. Casarrubios, L., Gómez-Cerezo, N., Sánchez-Salcedo, S., Feito, M.J., Serrano, M.C., Saiz-Pardo, M., Ortega, L., de Pablo, D., Díaz-Güemes, I., Fernández-Tomé, B., Enciso, S., Sánchez-Margallo, F.M., Portolés, M.T., Arcos, D., and Vallet-Regí, M., Silicon substituted hydroxyapatite/VEGF scaffolds stimulate bone regeneration in osteoporotic sheep, Acta Biomater., 2020, vol. 101, pp. 544–553.

    Article  CAS  Google Scholar 

  6. Goldberg, M.A., Gafurov, M.R., Murzakhanov, F.F., Fomin, A.S., Antonova, O.S., Khairutdinova, D.R., Pyataev, A.V., Makshakova, O.N., Konovalov, A.A., Leonov, A.V., Akhmedova, S.A., Sviridova, I.K., Sergeeva, N.S., Barinov, S.M., and Komlev, V.S., Mesoporous iron(III)-doped hydroxyapatite nanopowders obtained via iron oxalate, Nanomaterials, 2021, vol. 11, no. 811, pp. 1–21. www.sciencedirect.com/science/article/pii/S1742706119307123?via%3Dihub - !

    Article  Google Scholar 

  7. Kaur, S., Bala, N., and Khosla, Ch., Characterization of thermal-sprayed hap and HAP/TiO2 coatings for biomedical applications, J. Therm. Spray Technol., 2018, vol. 27, no. 5, pp. 1356–1370.

    Article  CAS  Google Scholar 

  8. Smurov, I. and Ulianitskiy, V., Computer controlled detonation spraying: a spraying process upgraded to advanced applications, WIT Trans. Eng. Sci., 2011, vol. 71, pp. 265–276.

    Article  Google Scholar 

  9. Kalita, V.I., Komlev, D.I., Radyuk, A.A., Komlev, V.S., Shamrai, V.F., Sirotinkin, V.P., and Fedotov, A.Yu., Influence of substrate temperature and hydrothermal treatment on the phase composition of plasma-sprayed phosphate coatings, Inorg. Mater., 2021, vol. 57, no. 6, pp. 598–602.

    Article  CAS  Google Scholar 

  10. Demnati, I., Parco, M., Grossin, D., Fagoaga, I., Drouet, C., Barykin, G., Combes, C., Braceras, I., Goncalves, S., and Rey, C., Hydroxyapatite coating on titanium by a low energy plasma spraying mini-gun, Surf. Coat. Technol., 2012, vol. 206, nos. 8–9, pp. 2346–2353.

    Article  CAS  Google Scholar 

  11. Khor, K.A. and Cheang, P., Characterization of thermal sprayed hydroxyapatite powders and coatings, J. Therm. Spray Technol., 1994, vol. 3, pp. 45–50.

    Article  CAS  Google Scholar 

  12. Batraev, I.S., Prokhorov, E.S., and Ul’yanitskii, V.Y., Acceleration and heating of powder particle by gas detonation products in channels with a conical passage, Combust. Explos. Shock Waves, 2014, vol. 50, no. 3, pp. 315–322.

    Article  Google Scholar 

  13. Kuroda, S., Kawakita, J., Watanabe, M., and Katanoda, H., Warm spraying—a novel coating process based on high-velocity impact of solid particles, Sci. Technol. Adv. Mater., 2008, vol. 9, no. 3, paper 033002.

  14. Nosenko, V., Strutynska, N., Vorona, I., Zatovsky, I., Dzhagan, V., Lemishko, S., Epple, M., Prymak, O., Baran, N., Ishchenko, S., Slobodyanik, N., Prylutskyy, Yu., Klyui, N., and Temchenko, V., Structure of biocompatible coatings produced from hydroxyapatite nanoparticles by detonation spraying, Nanoscale Res. Lett., 2015, vol. 10, paper 464.

  15. Klyui, M.I., Temchenko, V.P., Gryshkov, O.P., Dubok, V.A., Kladko, V.P., Kuchuk, A.V., Dzhagan, V.M., Yukhymchuk, V.O., and Kiselov, V.S., Bio-SiC ceramics coated with hydroxyapatite using gas-detonation deposition: an alternative to titanium-based medical implants, Funct. Mater., 2013, vol. 20, no. 2, pp. 163–171.

    Article  CAS  Google Scholar 

  16. Erkmen, Z.E., The effect of heat treatment on the morphology of D-gun sprayed hydroxyapatite coatings, J. Biomed. Mater. Res., 1999, vol. 48, no. 6, pp. 861–868.

    Article  CAS  Google Scholar 

  17. Klyui, N., Sliepkin, O., Tsabiy, L., Temchenko, V., Chorniy, V., and Zatovsky, I., Gas detonation deposition technology – new prospectives for production of Ca-phosphate biocompatible coatings onto medical implants, IEEE 9th Int. Conf. Nanomaterials: Applications and Properties, Odessa, 2019, paper 02BA04.

  18. Tsygankov, P.A., Skriabin, A.S., Telekh, V.D., Loktionov, E.Yu., and Chelmodeev, R.I., Interaction between dusty shock waves and three-dimensional scaffolds of carbon nanocomposites upon the deposition of biocompatible coatings, Bull. Russ. Acad. Sci.: Phys., 2018, vol. 82, no. 4, pp. 380–385.

    Article  CAS  Google Scholar 

  19. Tsygankov, P.A., Skryabin, A.S., Krikorov, A.A., Chelmodeev, R.I., Vesnin, V.R., and Parada-Becerra, F.F., Formation of a combined bioceramics layer on titanium implants, J. Phys.: Conf. Ser., 2019, vol. 1386, paper 012011.

  20. Ulianitsky, V., Shtertser, A., Zlobin, S., and Smurov, I., Computer-controlled detonation spraying: from process fundamentals toward advanced applications, J. Therm. Spray Technol., 2011, vol. 20, no. 4, pp. 791–801.

    Article  Google Scholar 

  21. Kotian, R., Rao, P., and Madhyastha, P., X-ray diffraction analysis of hydroxyapatite-coated in different plasma gas atmosphere on Ti and Ti–6Al–4V, Eur. J. Dent., 2017, vol. 11, no. 4, pp. 438–446.

    Article  Google Scholar 

  22. Sa, Y., Guo, Y., Feng, X., Wang, M., Li, P., Gao, Y., Yang, X., and Jiang, T., Are different crystallinity-index-calculating methods of hydroxyapatite efficient and consistent?, New J. Chem., 2017, vol. 41, no. 13, pp. 5723–5731.

    Article  CAS  Google Scholar 

  23. Koutsopoulos, S., Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods, J. Biomed. Mater. Res., 2002, vol. 62, no. 4, pp. 600–612.

    Article  CAS  Google Scholar 

  24. Nosenko, V.V., Yaremko, A.M., Dzhagan, V.M., Vorona, I.P., Romanyuk, Yu.A., and Zatovsky, I.V., Nature of some features in Raman spectra of hydroxyapatite-containing materials, J. Raman Spectrosc., 2016, vol. 47, no. 6, pp. 726–730.

    Article  CAS  Google Scholar 

  25. Demnati, I., Grossin, D., Combes, Ch., and Rey, Ch., Plasma-sprayed apatite coatings: review of physical–chemical characteristics and their biological consequences, J. Med. Biol. Eng., 2014, vol. 34, no. 1, pp. 1–7.

    Article  Google Scholar 

  26. Gras, P., Rey, C., Marsan, O., Sarda, S., and Combes, C., Synthesis and characterisation of hydrated calcium pyrophosphate phases of biological interest, Eur. J. Inorg. Chem., 2013, vol. 2013, no. 34, pp. 5886–5895.

    Article  CAS  Google Scholar 

  27. Ben-Nissan, B., Advances in Calcium Phosphates Biomaterials, Berlin: Springer, 2014.

    Book  Google Scholar 

  28. Safronova, T., Putlayev, V., and Shekhirev, M., Resorbable calcium phosphates based ceramics, Powder Metall. Met. Ceram., 2013, vol. 52, nos. 5–6, pp. 357–363.

    Article  CAS  Google Scholar 

  29. Heimann, R.B., Plasma-sprayed hydroxylapatite coatings as biocompatible intermediaries between inorganic implant surfaces and living tissue, J. Therm. Spray. Technol., 2018, vol. 27, pp. 1212–1237.

    Article  CAS  Google Scholar 

  30. Cao, N., Dong, J., Wang, Q., Ma, Q., Xue, Ch., and Li, M., An experimental bone defect healing with hydroxyapatite coating plasma sprayed on carbon/carbon composite implants, Surf. Coat. Technol., 2010, vol. 205, no. 4, pp. 1150–1156.

    Article  CAS  Google Scholar 

  31. Xue, W., Tao, Sh., Liu, X., Zheng, X., and Ding, Ch., In vivo evaluation of plasma sprayed hydroxyapatite coatings having different crystallinity, Biomaterials, 2004, vol. 25, no. 3, pp. 415–421.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully thank O.V. Barzinskii, I.E. Krylov, and OOO Konmet (Moscow, Russia) for providing the equipment and samples used in this investigation; N.S. Sergeeva and I.K. Sviridov (Gertsen Research Institute of Oncology, Moscow, Russia) for their valuable comments regarding this work; and B.A. Parshin for performing the Raman spectroscopy characterization of the materials.

Funding

This work was supported by the Russian Science Foundation, project no. 20-79-10190.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Skryabin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skryabin, A.S., Tsygankov, P.A., Vesnin, V.R. et al. Physicochemical Properties and Osseointegration of Titanium Implants with Bioactive Calcium Phosphate Coatings Produced by Detonation Spraying. Inorg Mater 58, 71–77 (2022). https://doi.org/10.1134/S0020168522010113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522010113

Keywords:

Navigation