Skip to main content

Advertisement

Log in

Silica xerogel-chitosan nano-hybrids for use as drug eluting bone replacement

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Silica xerogel-chitosan hybrids containing vancomycin were fabricated by the sol–gel process at room temperature and their potential as a drug eluting bone replacement was evaluated in terms of their mechanical properties and drug release behaviors. Regardless of the content of chitosan, all of the prepared hybrids had a uniform mesoporous structure, which would allow the effectual loading of vancomycin. As the content of chitosan was increased, the strength, strain to failure, and work of fracture of the hybrids were significantly enhanced, while the elastic modulus was decreased. These changes in the mechanical properties were mainly attributed to the mitigation of the brittleness of the silica xerogel through its hybridization with the flexible chitosan phase. In addition, the initial burst-effect was remarkably reduced by increasing the content of chitosan. The hybrids with more than 30% chitosan could release the vancomycin for an extended period of time in a controlled manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aza PND, Guititi F, Aza SD. Bioeutectic: a new ceramic material for human bone replacement. Biomaterials. 1997;18:1285–91.

    Article  PubMed  Google Scholar 

  2. Lemons JE. Ceramics: past, present, and future. Bone. 1996;19:1219–88.

    Article  Google Scholar 

  3. Vassilis K, David K. Porosity of 3D biomaterial scaffolds and osteogenesis (Review). Biomaterials. 2005;26:5474–91.

    Article  Google Scholar 

  4. Coombes AGA, Meikle MC. Resorbable synthetic polymers as replacements for bone graft. Clin Mater. 1994;17:35–67.

    Article  CAS  PubMed  Google Scholar 

  5. Hing AK. Bone repair in the twenty-first century: biology, chemistry or engineering. Phil Trans R Soc Lond A. 2004;362:2821–50.

    Article  CAS  ADS  Google Scholar 

  6. Teller M, Gopp U, Neumann HG, Kuhn KD. Release of gentamicin from bone regenerative materials: an in vitro study. J Biomed Mater Res B. 2007;81:23–9.

    CAS  Google Scholar 

  7. Le Ray AM, Chiffoleau S, Iooss P, Grimandi G, Gouyette A, Daculsi G, et al. Vancomycin encapsulation in biodegradable poly(ε-caprolactone) microparticles for bone implantation. Influence of the formulation process on size, drug loading, in vitro release and cytocompatibility. Biomaterials. 2003;24:443–9.

    Article  CAS  PubMed  Google Scholar 

  8. Pedro GR, Clement S. Functional hybrid materials. : Wiley-VCH Verlag GmbH & Co. KGaA; 2004.

    Google Scholar 

  9. Radin S, Ducheyne P, Kamplain T, Tan BH. Silica sol–gel for the controlled release of antibiotics. I. Synthesis, characterization, and in vitro release. J Biomed Mater Res. 2001;57:313–20.

    Article  CAS  PubMed  Google Scholar 

  10. Meseguer-Olmo L, Ros-Nicolas MJ, Clavel-Sainz M, Vicente-Ortega V, Alcaraz-Banos M, Lax-Perez A, et al. Biocompatibility and in vivo gentamicin release from bioactive sol–gel glass implants. J Biomed Mater Res. 2002;61:458–65.

    Article  CAS  PubMed  Google Scholar 

  11. Choi D, Marra KG, Kumta PN. Chemical synthesis of hydroxyapatite/poly(e-caprolactone) composites. Mater Res Bull. 2004;39:417–32.

    Article  CAS  Google Scholar 

  12. Reis RL, Cunha AM, Oliveira MJ, Campos AR, Bevis MJ. Relationship between processing and mechanical properties of injection molded high molecular mass polyethylene + hydroxyapatite composites. Mat Res Innovat. 2001;4:263–72.

    Article  CAS  Google Scholar 

  13. Kim HW, Knowles JC, Kim HE. Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials. 2004;25:1279–87.

    Article  CAS  PubMed  Google Scholar 

  14. Laurencin CT, Attawi MA, Lu LQ, Borden MD, Lu HH, Gorum WJ, et al. Poly(lactide-co-glycolide)/hydroxyapatite delivery of BMP-2-producing cells: A regional gene therapy approach to bone regeneration. Biomaterials. 2001;22:1271–7.

    Article  CAS  PubMed  Google Scholar 

  15. Komlev VS, Barinova SM, Koplik EV. A method to fabricate porous spherical hydroxyapatite granules intended for time-controlled drug release. Biomaterials. 2002;23:3449–54.

    Article  CAS  PubMed  Google Scholar 

  16. Lee EJ, Shin DS, Kim HE, Kim HW, Koh YH, Jang JH. Membrane of hybrid chitosan–silica xerogel for guided bone regeneration. Biomaterial. 2009;30:743–50.

    Article  CAS  Google Scholar 

  17. Hamadouche M, Meunier A, Greenspan DC, Blanchat C, Zhong JP, La Torre GP, et al. Long-term in vivo bioactivity and degradability of bulk sol–gel bioactive glasses. J Biomed Mater Res. 2001;54:560–6.

    Article  CAS  PubMed  Google Scholar 

  18. Li P, Ye X, Kangasniemi I, de Blieck-Hogervorst JMA, Klein CPAT, de Groot K. In vivo calcium phosphate formation induced by sol–gel-prepared silica. J Biomed Mater Res A. 1995;29:325–8.

    Article  CAS  Google Scholar 

  19. Radina S, El-Bassyounia G, Vresilovicb EJ, Schepersc E, Ducheyne P. In vivo tissue response to resorbable silica xerogels as controlled-release materials. Biomaterials. 2005;26:1043–52.

    Article  Google Scholar 

  20. Nilsen E, Einarsrud MA, Scherer GW. Effect of precursor and hydrolysis conditions on drying shrinkage. J Non-Cryst Solids. 1997;221:135–43.

    Article  CAS  ADS  Google Scholar 

  21. Avnir D, Coradin T, Lev O, Livage J. Recent bio-applications of sol–gel materials. J Mater Chem. 2006;16:1013–30.

    Article  CAS  Google Scholar 

  22. Mosquera MJ, de los Santos DM, Valdez-Castro L, Esquivias L. New route for producing crack-free xerogels: obtaining uniform pore size. J Non-Cryst Solids. 2008;354:645–50.

    Article  CAS  Google Scholar 

  23. Radin S, Falaizea S, Lee MH, Ducheyne P. In vitro bioactivity and degradation behavior of silica xerogels intended as controlled release materials. Biomaterials. 2002;23:3113–22.

    Article  CAS  PubMed  Google Scholar 

  24. Aughenbaugh W, Radin S, Ducheyne P. Silica sol–gel for the controlled release of antibiotics. II. The effect of synthesis parameters on the in vitro release kinetics of vancomycin. J Biomed Mater Res. 2001;57:321–6.

    Article  CAS  PubMed  Google Scholar 

  25. Martino AD, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26:5983–90.

    Article  PubMed  Google Scholar 

  26. Tunney MM, Brady AJ, Buchanan F, Newe C, Dunne NJ. Incorporation of chitosan in acrylic bone cement: Effect on antibiotic release, bacterial biofilm formation and mechanical properties. J Mater Sci: Mater Med. 2008;19:1609–15.

    Article  CAS  Google Scholar 

  27. Ueno H, Yamada H, Tanaka I, Kaba N, Matsuura M, Okumura M, et al. Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials. 1999;20:1407–14.

    Article  CAS  PubMed  Google Scholar 

  28. Trung TS, Thein-Han WW, Qui NT, Ng CH, Stevens WF. Functional characteristics of shrimp chitosan and its membranes as affected by the degree of deacetylation. Biores Tech. 2006;97:659–63.

    Article  CAS  Google Scholar 

  29. Silva SS, Ferreira RAS, Fu L, Carlos LD, Mano JF, Reis RL, et al. Functional nanostructured chitosan–siloxane hybrids. J Mater Chem. 2005;15:3952–61.

    Article  CAS  Google Scholar 

  30. Bandyopadhyay A, Bhowmick AK, Sarkar MD. Synthesis and characterization of acrylic rubber/silica hybrid composites prepared by sol–gel technique. J Appl Polym Sci. 2004;93:2579–89.

    Article  CAS  Google Scholar 

  31. Chen X, Jia J, Dong S. Organically modified sol–gel/chitosan composite based glucose biosensor. Electroanalysis. 2003;15:608–12.

    Article  CAS  Google Scholar 

  32. Blouin RA, Bauer LA, Miller DD, Record KE, Griffen WO Jr. Vancomycin pharmacokinetics in normal and morbidly obese subjects. Antimicrob Agents Chemother. 1982;21:575–80.

    CAS  PubMed  Google Scholar 

  33. Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.

    Article  CAS  PubMed  Google Scholar 

  34. Acharya G, Park K. Mechanisms of controlled drug release from drug-eluting stents. Adv Drug Deliv Rev. 2006;58:387–401.

    Article  CAS  PubMed  Google Scholar 

  35. Rothstein SN, Federspiel WJ, Little SR. A unified mathematical model for the prediction of controlled release from surface and bulk eroding polymer matrices. Biomaterials. 2009;30:1657–64.

    Article  CAS  PubMed  Google Scholar 

  36. Patterson J, Stayton PS, Li X. In situ characterization of the degradation of PLGA microspheres in hyaluronic acid hydrogels by optical coherence tomography. IEEE Trans Med Imaging. 2009;28:74–81.

    Article  PubMed  Google Scholar 

  37. Ahola MS, Sailynoja ES, Raitavuo MH, Vaahtio MM, Salonen JI, Yli-Urpo AUO. In vitro release of heparin from silica xerogels. Biomaterials. 2001;22:2163–70.

    Article  CAS  PubMed  Google Scholar 

  38. Morpurgo M, Teoli D, Palazzo B, Bergamin E, Realdon N, Guglielmi M. Influence of synthesis and processing conditions on the release behavior and stability of sol–gel derived silica xerogels embedded with bioactive compounds. Farmaco. 2005;60:675–83.

    Article  CAS  PubMed  Google Scholar 

  39. Pancholi K, Ahras N, Stride E, Edirisinghe M. Novel electrohydrodynamic preparation of porous chitosan particles for drug delivery. J Mater Sci: Mater Med. 2009;20:917–23.

    Article  CAS  Google Scholar 

  40. Zhao L, Chang J, Zhai WY. Preparation and HL-7702 cell functionality of titania/chitosan composite scaffolds. J Mater Sci: Mater Med. 2009;20:949–57.

    Article  CAS  Google Scholar 

  41. Lu X, Wang Y, Liu Y, Wang J, Qu S, Feng B, et al. Preparation of HA/chitosan composite coatings on alkali treated titanium surfaces through sol–gel techniques. Mater Lett. 2007;61:3970–3.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Fundamental R&D Program for Core Technology of Materials funded by Ministry of Knowledge Economy, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoun-Ee Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, EJ., Jun, SH., Kim, HE. et al. Silica xerogel-chitosan nano-hybrids for use as drug eluting bone replacement. J Mater Sci: Mater Med 21, 207–214 (2010). https://doi.org/10.1007/s10856-009-3835-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3835-9

Keywords

Navigation