Skip to main content

Advertisement

Log in

Incorporation of chitosan in acrylic bone cement: Effect on antibiotic release, bacterial biofilm formation and mechanical properties

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bacterial infection remains a significant problem following total joint replacement. Efforts to prevent recurrent implant infection, including the use of antibiotic-loaded bone cement for implant fixation at the time of revision surgery, are not always successful. In this in vitro study, we investigated whether the addition of chitosan to gentamicin-loaded Palacos® R bone cement increased antibiotic release and prevented bacterial adherence and biofilm formation by Staphylococcus spp. clinical isolates. Furthermore, mechanical tests were performed as a function of time post-polymerisation in pseudo-physiological conditions. The addition of chitosan to gentamicin-loaded Palacos® R bone cement significantly decreased gentamicin release and did not increase the efficacy of the bone cement at preventing bacterial colonisation and biofilm formation. Moreover, the mechanical performance of cement containing chitosan was significantly reduced after 28 days of saline degradation with the compressive and bending strengths not in compliance with the minimum requirements as stipulated by the ISO standard for PMMA bone cement. Therefore, incorporating chitosan into gentamicin-loaded Palacos® R bone cement for use in revision surgery has no clinical antimicrobial benefit and the detrimental effect on mechanical properties could adversely affect the longevity of the prosthetic joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M.M. Tunney, S. Patrick, S.P. Gorman, J.R. Nixon, N. Anderson, R.I. Davis, D. Hanna, G. Ramage, J. Bone Joint Surg. Br. 80, 568 (1998)

    Article  CAS  Google Scholar 

  2. A. Trampuz, K.E. Piper, M.J. Jacobson, A.D. Hanssen, K.K. Unni, D.R. Osmon, J.N. Mandrekar, F.R. Cockerill, J.M. Steckelberg, J.F. Greenleaf, R. Patel, N. Engl. J. Med. 357, 654 (2007)

    Article  CAS  Google Scholar 

  3. F. Langlais, J. Bone Joint. Surg. Br. 85, 637 (2003)

    Google Scholar 

  4. J.G. Hendriks, J.R. Van Horn, H.C. Van Der Mei, H.J. Busscher, Biomaterials 25, 545 (2004)

    Article  CAS  Google Scholar 

  5. N. Passuti, F. Gouin, Joint Bone Spine. 70, 169 (2003)

    Article  Google Scholar 

  6. M.M. Tunney, G. Ramage, S. Patrick, J.R. Nixon, P.G. Murphy, S.P. Gorman, Antimicrob. Agents Chemother. 42, 3002 (1998)

    CAS  Google Scholar 

  7. B. Thomes, P. Murray, D. Bouchier-Hayes, J. Bone Joint. Surg. Br. 84, 758 (2002)

    Article  CAS  Google Scholar 

  8. P. Anguita-Alonso, A.D. Hanssen, D.R. Osmon, A. Trampuz, J.M. Steckelberg, R. Patel, Clin .Orthop. Relat. Res. 439, 43 (2005)

    Article  Google Scholar 

  9. M.M. Tunney, N. Dunne, G. Einarsson, A. Mcdowell, A. Kerr, S. Patrick, J. Orthop. Res. 25, 2 (2007)

    Article  CAS  Google Scholar 

  10. E. Khor, L.Y. Lim, Biomaterials 24, 2339 (2003)

    Article  CAS  Google Scholar 

  11. Z. Ge, S. Baguenard, L.Y. Lim, A. Wee, E. Khor, Biomaterials 25, 1049 (2004)

    Article  CAS  Google Scholar 

  12. B.G. Keevil, S.J. Lockhart, D.P. Cooper, J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 794, 329 (2003)

    Article  CAS  Google Scholar 

  13. International Standard Organisation 5833: Implants for surgery—Acrylic resin cement, (2002)

  14. M.V. Risbud, R.R. Bhonde, Drug Deliv. 7, 69 (2000)

    Article  CAS  Google Scholar 

  15. B. Buranapanitkit, V. Srinilta, N. Ingviga, K. Oungbho, A. Geater, C. Ovatlarnporn, Clin. Orthop. Relat. Res. 424, 244 (2004)

    Google Scholar 

  16. E. Bertazzoni Minelli, A. Benini, B. Magnan, P. Bartolozzi, J. Antimicrob. Chemother. 53, 329 (2004)

    Article  CAS  Google Scholar 

  17. G.J. Sterling, S. Crawford, J.H. Potter, G. Koerbin, R. Crawford, J. Bone Joint Surg. Br. 85, 646 (2003)

    CAS  Google Scholar 

  18. Z. Shi, K.G. Neoh, E.T. Kang, W. Wang, Biomaterials 27, 2440 (2006)

    Article  CAS  Google Scholar 

  19. C.R. Arciola, D. Campoccia, S. Gamberini, S. Rizzi, M.E. Donati, L. Baldassarri, L. Montanaro, Biomaterials 25, 4117 (2004)

    Article  CAS  Google Scholar 

  20. C.R. Arciola, S. Gamberini, D. Campoccia, L. Visai, P. Speziale, L. Baldassarri, L. Montanaro, J. Biomed. Mater. Res. A75, 408 (2005)

    Article  Google Scholar 

  21. M.C. Garcia-Saenz, A. Arias-Puente, M.J. Fresnadillo-Martinez, A. Matilla-Rodriguez, J. Cataract. Refract. Surg. 26, 1673 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Aaron Brady was funded by a European Social Fund Grant. The supply of bacterial isolates by Professor Sheila Patrick, School of Medicine and Dentistry, Queen’s University Belfast, UK and chitosan by Dr Gavin Walker, School of Chemistry and Chemical Engineering, Queen’s University Belfast, UK is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Tunney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tunney, M.M., Brady, A.J., Buchanan, F. et al. Incorporation of chitosan in acrylic bone cement: Effect on antibiotic release, bacterial biofilm formation and mechanical properties. J Mater Sci: Mater Med 19, 1609–1615 (2008). https://doi.org/10.1007/s10856-008-3394-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3394-5

Keywords

Navigation