Skip to main content
Log in

Electrospinning of novel biodegradable poly(ester urethane)s and poly(ester urethane urea)s for soft tissue-engineering applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The development of biomimetic highly-porous scaffolds is essential for successful tissue engineering. Segmented poly(ester urethane)s and poly(ester urethane urea)s have been infrequently used for the fabrication of electrospun nanofibrous tissues, which is surprising because these polymers represent a very large variety of materials with tailored properties. This study reports the preparation of new electrospun elastomeric polyurethane scaffolds. Two novel segmented polyurethanes (SPU), synthesized from poly(ε-caprolactone) diol, 1,6-hexamethylene diisocyanate, and diester-diphenol or diurea-diol chain extenders, were used (Caracciolo et al. in J Mater Sci Mater Med 20:145–155, 2009). The spinnability and the morphology of the electrospun SPU scaffolds were investigated and discussed. The electrospinning parameters such as solution properties (polymer concentration and solvent) and processing parameters (applied electric field, needle to collector distance and solution flow rate) were optimized to achieve smooth, uniform bead-free fibers with diameter (~700 nm) mimicking the protein fibers of native extracellular matrix (ECM). The obtained elastomeric polyurethane scaffolds could be appropriate for soft tissue-engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Greiner A, Wendorff JH. Angew Chem Int. 2007;46:5670–703. doi:10.1002/anie.200604646.

    Article  CAS  Google Scholar 

  2. Lannutti J, Reneker D, Ma T, Tomasko D, Farson D. Mater Sci Eng C. 2007;27:504–9. doi:10.1016/j.msec.2006.05.019.

    Article  CAS  Google Scholar 

  3. Venugopal J, Zhang YZ, Ramakrishna S. J Nanoeng Nanosyst. 2004;218:35–45. doi:10.1243/174034905X39140.

    Google Scholar 

  4. Thomas V, Zhang X, Catledge SA, Vohra YK. Biomed Mater. 2007;2:224–32. doi:10.1088/1748-6041/2/4/004.

    Article  PubMed  ADS  CAS  Google Scholar 

  5. Pham QP, Sharma U, Mikos AG. Tissue Eng. 2006;12:1197–211. doi:10.1089/ten.2006.12.1197.

    Article  PubMed  CAS  Google Scholar 

  6. Murugan R, Ramakrishna S. Tissue Eng. 2006;12:435–47. doi:10.1089/ten.2006.12.435.

    Article  PubMed  CAS  Google Scholar 

  7. Liao S, Li B, Ma Z, Wei H, Chan C, Ramakrishna S. Biomed Mater. 2006;1:R45–53. doi:10.1088/1748-6041/1/3/R01.

    Article  PubMed  ADS  CAS  Google Scholar 

  8. Thomas V, Dean DR, Vohra YK. Curr Nanosci. 2006;2:155–77.

    CAS  Google Scholar 

  9. Yoshimoto H, Shin YM, Terai H, Vacanti JP. Biomaterials. 2003;24:2077–82. doi:10.1016/S0142-9612(02)00635-X.

    Article  PubMed  CAS  Google Scholar 

  10. Shin M, Yoshimoto H, Vacanti JP. Tissue Eng. 2004;10:33–41. doi:10.1089/107632704322791673.

    Article  PubMed  CAS  Google Scholar 

  11. Agrawal MC, Ray RB. J Biomed Mater Res. 2001;55:141–50. doi:10.1002/1097-4636(200105)55:2<141::AID-JBM1000>3.0.CO;2-J.

    Article  PubMed  ADS  CAS  Google Scholar 

  12. Chen Q-Z, Bismarck A, Hansen U, Junaid S, Tran MQ, Harding SE, et al. Biomaterials. 2008;29:47–57. doi:10.1016/j.biomaterials.2007.09.010.

    Article  PubMed  Google Scholar 

  13. Shin M, Ishii O, Sueda T, Vacanti JP. Biomaterials. 2004;25:3717–23. doi:10.1016/j.biomaterials.2003.10.055.

    Article  PubMed  CAS  Google Scholar 

  14. Mo XM, Xu CY, Kotaki M, Ramakrishna S. Biomaterials. 2004;25:1883–90. doi:10.1016/j.biomaterials.2003.08.042.

    Article  PubMed  CAS  Google Scholar 

  15. Xu CY, Inai R, Kotaki M, Ramakrishna S. Biomaterials. 2004;25:877–86. doi:10.1016/S0142-9612(03)00593-3.

    Article  PubMed  CAS  Google Scholar 

  16. Riboldi SA, Sampaolesi M, Neuenschwander P, Cossu G, Mantero S. Biomaterials. 2005;26:4606–15. doi:10.1016/j.biomaterials.2004.11.035.

    Article  PubMed  CAS  Google Scholar 

  17. Stankus JJ, Guan J, Fujimoto K, Wagner WR. Biomaterials. 2006;27:735–44. doi:10.1016/j.biomaterials.2005.06.020.

    Article  PubMed  CAS  Google Scholar 

  18. Kidoaki S, Kwon IK, Matsuda T. Biomaterials. 2005;26:37–46. doi:10.1016/j.biomaterials.2004.01.063.

    Article  PubMed  CAS  Google Scholar 

  19. Kidoaki S, Kwon IK, Matsuda T. J Biomed Mater Res B Appl Biomater. 2006;76B:219–29. doi:10.1002/jbm.b.30336.

    Article  CAS  Google Scholar 

  20. Gunatillake PA, Adhikari R. Eur Cell Mater. 2003;5:1–16.

    PubMed  CAS  Google Scholar 

  21. Guelcher SA. Tissue Eng Part B. 2008;14:3.

    Article  CAS  Google Scholar 

  22. Alperin C, Zandstra PW, Woodhouse KA. Biomaterials. 2005;26:7377–86. doi:10.1016/j.biomaterials.2005.05.064.

    Article  PubMed  CAS  Google Scholar 

  23. Fujimoto KL, Guan J, Oshima H, Sakai T, Wagner WR. Thorac Surg. 2007;83:648–54. doi:10.1016/j.athoracsur.2006.06.085.

    Article  Google Scholar 

  24. Guan J, Fujimoto KL, Sacks MS, Wagner WR. Biomaterials. 2005;26:3961–71. doi:10.1016/j.biomaterials.2004.10.018.

    Article  PubMed  CAS  Google Scholar 

  25. Gisselfält K, Edberg B, Flodin P. Biomacromolecules. 2002;3:951–8. doi:10.1021/bm025535u.

    Article  PubMed  Google Scholar 

  26. Heijkants RGJC, van Calck RV, van Tienen TG, de Groot JH, Buma P, Pennings AJ. Biomaterials. 2005;26:4219–28. doi:10.1016/j.biomaterials.2004.11.005.

    Article  PubMed  CAS  Google Scholar 

  27. Kavlock KD, Pechar TW, Hollinger JO, Guelcher SA, Goldstein AS. Acta Biomater. 2007;3:475–84. doi:10.1016/j.actbio.2007.02.001.

    Article  PubMed  CAS  Google Scholar 

  28. Riboldi SA, Sadr N, Pigini L, Neuenschwander P, Simonet M, Mognol P, et al. J Biomed Mater Res. 2008;84A:1094–101. doi:10.1002/jbm.a.31534.

    Article  CAS  Google Scholar 

  29. Borkenhagen M, Stoll RC, Neuenschwander P, Suter UW, Aebischer P. Biomaterials. 1998;19:2155–65. doi:10.1016/S0142-9612(98)00122-7.

    Article  PubMed  CAS  Google Scholar 

  30. Henry JA, Burugapalli K, Neuenschwander P, Pandit A. Acta Biomater. 2009;5:29–42. doi:10.1016/j.actbio.2008.08.020.

    Article  PubMed  CAS  Google Scholar 

  31. Caracciolo PC, de Queiroz AAA, Higa OZ, Buffa F, Abraham GA. Acta Biomater. 2008;4:976–88. doi:10.1016/j.actbio.2008.02.016.

    Article  PubMed  CAS  Google Scholar 

  32. Caracciolo PC, Buffa F, Abraham GA. J Mater Sci Mater Med. 2009;20:145–55. doi:10.1007/s10856-008-3561-8.

    Article  PubMed  CAS  Google Scholar 

  33. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S. Comp Sci Technol. 2003;63:2223–53. doi:10.1016/S0266-3538(03)00178-7.

    Article  CAS  Google Scholar 

  34. Gupta P, Elkins C, Long TE, Wilkes GL. Polymer (Guildf). 2005;46:4799–810.

    CAS  Google Scholar 

  35. Shenoy SL, Douglas Bates W, Frisch HL, Wnek GE. Polymer (Guildf). 2005;46:3372–84. doi:10.1016/j.polymer.2005.03.011.

    Article  CAS  Google Scholar 

  36. Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Biomacromolecules. 2002;3:232–8. doi:10.1021/bm015533u.

    Article  PubMed  CAS  Google Scholar 

  37. Thomas V, Dean DR, Jose MV, Mathew B, Chowdhury S, Vohra YK. Biomacromolecules. 2007;8:631–7. doi:10.1021/bm060879w.

    Article  PubMed  CAS  Google Scholar 

  38. Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI. Biomaterials. 2005;26:5999–6008. doi:10.1016/j.biomaterials.2005.03.030.

    Article  PubMed  CAS  Google Scholar 

  39. Jose MV, Steinert BW, Thomas V, Dean DR, Abdalla MA, Price G, et al. Polymer (Guildf). 2007;48:1096–104. doi:10.1016/j.polymer.2006.12.023.

    Article  CAS  Google Scholar 

  40. Stankus JJ, Guan J, Wagner WR. J Biomed Mater Res. 2004;70A:603–14. doi:10.1002/jbm.a.30122.

    Article  CAS  Google Scholar 

  41. Thomas V, Jayabalan M. J Biomed Mater Res. 2001;56A:144–57. doi:10.1002/1097-4636(200107)56:1<144::AID-JBM1079>3.0.CO;2-D.

    Article  Google Scholar 

  42. Thomas V, Jayabalan M. Biomaterials. 2002;23:273–82. doi:10.1016/S0142-9612(01)00106-5.

    Article  PubMed  CAS  Google Scholar 

  43. Nasir M, Matsumoto H, Danno T, Minagawa M, Irisawa T, Shioya M, et al. J Polym Sci Part B Polym Phys. 2006;44:779–86. doi:10.1002/polb.20737.

    Article  CAS  Google Scholar 

  44. Theron SA, Zussman E, Yarin AL. Polymer (Guildf). 2004;45:2017–30. doi:10.1016/j.polymer.2004.01.024.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Y.K.V. and V.T. acknowledge the financial support from National Science Foundation, USA under the NSF-NIRT program with grant No. DMR-0402891. P.C.C. thanks to National Research Council (CONICET, Argentina) for the fellowship awarded. G.A.A. and F.B. acknowledge the financial support of National Agency for the Promotion of Science and Technology, CONICET, and National University of Mar del Plata (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vinoy Thomas or Gustavo A. Abraham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caracciolo, P.C., Thomas, V., Vohra, Y.K. et al. Electrospinning of novel biodegradable poly(ester urethane)s and poly(ester urethane urea)s for soft tissue-engineering applications. J Mater Sci: Mater Med 20, 2129–2137 (2009). https://doi.org/10.1007/s10856-009-3768-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3768-3

Keywords

Navigation