Skip to main content
Log in

Synthetic-based blended electrospun scaffolds in tissue engineering applications

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrospinning, as one of the most common methodologies in nanofibers production, involves applying high voltages to a polymeric solution that is entrapped in a syringe to obtain biomimetic nanofibrous constructs. These microstructures may render resemblance to the extracellular matrix (ECM) and be used as a tissue engineering scaffold. The electrospun scaffolds can provide properties commensurate with the intended tissue, to be employed as a potential substitute for cell stroma and/or drug delivery applications. It seems that polymeric nanofibrous electrospun scaffolds are to meet indispensable requirements to support cells to grow, proliferate and differentiate; it is mostly because of interconnected porous architecture and tunable mechanical backup. Despite their wide diversity, synthetic polymers individually do not provide enough amenities for tissue regeneration and thus need to be blended with other biological macromolecules and polymeric biomaterials. This review will discuss recent decades’ pieces of literature on blend biopolymeric nanofibrous electrospun scaffolds in tissue repair and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Adapted with permission from reference [19]. Copyright 2019, John Wiley and Sons, Journal of Biomedical Materials Research Part A

Figure 2

Adapted with permission from reference [25]. Copyright 2020, Elsevier, Materials Science and Engineering: C

Figure 3

Adapted with permission from reference [25]. Copyright 2020, Elsevier, Materials Science and Engineering: C

Figure 4

Adapted with permission from reference [34]. Copyright 2019, Frontiers Editorial Office, Frontiers in Bioengineering and Biotechnology

Figure 5

Adapted with permission from reference [46]. Copyright 2018, DOVE Medical Press, International Journal of Nanomedicine

Figure 6

Adapted with permission from reference [72]. Copyright 2020, MDPI, Polymers

Figure 7

Adapted with permission from reference [103]. Copyright 2018, MDPI, Journal of Functional Biomaterials

Figure 8

Adapted with permission from reference [160]. Copyright 2011, Public Library of Science, PLoS One

Figure 9
Figure 10

Adapted with permission from reference [198]. Copyright 2018, MDPI, Nanomaterials

Figure 11

Adapted with permission from reference [216]. Copyright 2017, MDPI, Polymers

Figure 12

Adapted with permission from reference [231]. Copyright 2019, MDPI, Polymers

Figure 13

Similar content being viewed by others

Abbreviations

ADSCs:

Adipose derived stem cells

ALG-S:

Alginate sulfate

ALP:

Alkaline phosphatase

AP–g–GA:

Aniline pentamer–graft–gelatin

BSA:

Bovine serum albumin

ARPE-19:

Human retinal pigmented epithelium

BMSCs:

(Human) bone-marrow-derived mesenchymal stem cells

B. subtilis :

Bacillus subtilis

CAB:

Cellulose acetate butyrate

CS:

Chondroitin sulfate

CHM:

Ciprofloxacin hydrochloride monohydrate

Cs-g-PCL:

Chitosan-graft-PCL

CSNe:

Chitosan nanoemulsion

CS-HOBt:

Chitosan-hydroxybenzotriazole

CA:

Cellulose acetate

CNC:

Cellulose nanocrystals

CNF:

Cellulose nanofibers

CMC:

Carboxymethyl chitosan

CECS:

Carboxyethyl chitosan

CUR:

Curcumin

CHX:

Chlorhexidine

CIP:

Ciprofloxacin

CPs:

Conductive polymers

DMECM:

Decellularized meniscus extracellular matrix

DP:

Date palm

DMF:

Dimethylformamide

DPD:

Dipyridamole

E. coli :

Escherichia coli

EGF:

Epidermal growth factor

ECM:

Extracellular matrix

EC:

Endothelial cells

FEK4:

Human skin primary fibroblast cell line

GDNF:

Glial cell line-derived neurotrophic factor

gMSCs:

Gingival mesenchymal stem cells

hMSCs:

Human mesenchymal stem cells

HFIP:

1,1,1,3,3,3 Hexafluroisopropanol

HFFF-2:

Human fetal foreskin fibroblast cell line

HA:

Hyaluronic acid/hyaluronan

HAM:

Human amniotic membrane

HaCaT:

Human epidermal immortalized keratinocyte cell line

HUVEC:

Human umbilical vein endothelial cell

HDF:

Human dermal fibroblast

HASMCs:

Human aorta smooth muscle cells

HCF:

Human cardiac fibroblast

HEK293:

Human embryonic kidney cells

HEEpiC:

Human esophageal epithelial cells

HPG:

Hyperbranched polyglycerol

HEC:

Hydroxyethyl cellulose

iPSCs:

Induced pluripotent stem cells

K. pneumonia :

Klebsiella pneumonia

Κ-CG:

Κ-Carrageenan

Lcl-PHA:

Long-chain length PHA

LSCs:

Limbal stem cells

MRSA:

Methicillin-resistant Staphylococcus aureus

mcl-PHA:

Medium-chain length PHA

NFZ:

Nitrofurazone

NGF:

Nerve growth factor

O-Chitosan:

Organic soluble chitosan

OECs:

Olfactory ensheathing cells

PCL:

Poly(ε-caprolactone)

PLGA:

Poly(lactic-co-glycolic)acid

PEOT–PBT:

Poly(ethylene oxide terephthalate)–poly(butylene terephthalate)

PEGMA:

Poly(ethylene glycol methacrylate)

PEGDMA:

Poly(ethylene glycol dimethacrylate)

PHA:

Polyhydroxyalkanoates

P3ANA:

Poly(anthranilic acid)

PMMA:

Poly(methyl methacrylate)

PDS:

Polydioxanone

PTMC:

Poly(trimethylene carbonate)

PGS:

Poly(glycerol sebacate)

PA-6,6:

Polyamide-6,6

PAAc:

Poly(acrylic acid)

PLA:

Poly(lactic acid)

PEO:

Poly(ethylene oxide)

PHMB:

Poly(hexamethylene biguanide)

3ABAPANI:

Poly(aniline-co-3-aminobenzoic acid)

PRP:

Platelet-rich plasma

pHMGCL:

Poly(hydroxymethylglycolide-co-ε-caprolactone)

PPy:

Polypyrrole

PBAPCL:

Poly[(1,4-butylene adipate)-co-(polycaprolactam)]

PEG-b-(PPy)4 :

Poly(ethylene glycol)-modified polypyrrole

PVCz:

Poly(N-vinyl carbazole)

PS:

Polystyrene

P(3HB-co-4HB):

Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)

PLDLLA:

Poly[(l-lactide)-co-(d, l-lactide)]

PLCG:

Poly [(l-lactide)-co-(ε-caprolactone)-co-(glycolide)]

PES:

Polyethersulfone

PAN:

Polyacrylonitrile

PVDF:

Polyvinylidene fluoride

PBS-DLS:

Poly(butylene succinate-co-dilinoleic succinate)

PHBHHx:

Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)

PLCL:

Poly[(l-lactide)-co-(ε-caprolactone)]

PC:

Phosphatidylcholine

P. aeruginosa :

Pseudomonas aeruginosa

PEG:

Poly(ethylene glycol)

PEDOT/PSS:

Poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate)

PEI:

Polyethylenimine

PEII:

Polyetherimide

PVP:

Poly(N-vinyl-2-pyrrolidone)

(T)PU:

(Thermoplastic) polyurethane

PLLA:

Poly(l-lactic acid)

PDLA:

Poly(d-lactic acid)

PDLLA:

Poly(d, l-lactic acid)

PF-108:

Pluronic-F 108

PHB:

Poly(3-hydroxybutyrate)

PHBV:

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

PPDL:

Poly(l-lactic acid)-co-poly(pentadecalactone)

PANIS:

Polyanisidine

PAni:

Polyaniline

PBS:

Phosphate buffered-saline

PVA:

Poly(vinyl alcohol)

RGD:

Arginine–glycine–aspartic acid

Rap:

Rapamycin

rhBMP-2:

Recombinant human bone morphogenic protein-2

RBCs:

Red blood cells

Scl-PHA:

Short-chain length PHA

SMPU:

Shape memory polyurethane

SPEU:

Segmented polyurethane

SF:

Silk fibroin

SBF:

Simulated body fluid

SS:

Silk sericin

SA:

Sodium alginate

SPI:

Soy protein

TSF:

Tussah silk fibroin

TN:

Tannin

TCH:

Tetracycline hydrochloride

TC:

Tigecycline

TGF-b1:

Transforming growth factor-beta 1

VICs:

Valvular interstitial cells

WBPU:

Waterborne polyurethane

WBCs:

White blood cells

References

  1. Bhattarai DP, Aguilar LE, Park CH, Kim CS (2018) A review on properties of natural and synthetic based electrospun fibrous materials for bone tissue engineering. Membranes (Basel). https://doi.org/10.3390/membranes8030062

    Article  Google Scholar 

  2. Ameer JM, Anil Kumar PR, Kasoju N (2019) Strategies to tune electrospun scaffold porosity for effective cell response in tissue engineering. J Funct Biomater 10:1–21. https://doi.org/10.3390/jfb10030030

    Article  CAS  Google Scholar 

  3. Sell SA, Wolfe PS, Garg K et al (2010) The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues. Polymers (Basel) 2:522–553. https://doi.org/10.3390/polym2040522

    Article  CAS  Google Scholar 

  4. Teixeira MA, Amorim MTP, Felgueiras HP (2020) Poly(vinyl alcohol)-based nanofibrous electrospun scaffolds for tissue engineering applications. Polymers (Basel) 12:7

    Article  Google Scholar 

  5. Sampath UGTM, Ching YC, Chuah CH et al (2016) Fabrication of porous materials from natural/synthetic biopolymers and their composites. Materials (Basel) 9:1–32. https://doi.org/10.3390/ma9120991

    Article  CAS  Google Scholar 

  6. Jafari M, Paknejad Z, Rad MR et al (2017) Polymeric scaffolds in tissue engineering: a literature review. J Biomed Mater Res Part B Appl Biomater 105:431–459. https://doi.org/10.1002/jbm.b.33547

    Article  CAS  Google Scholar 

  7. Suh TC, Amanah AY, Gluck JM (2020) Electrospun scaffolds and induced pluripotent stem cell-derived cardiomyocytes for cardiac tissue engineering applications. Bioengineering 7:1–22. https://doi.org/10.3390/bioengineering7030105

    Article  CAS  Google Scholar 

  8. Kenry LCT (2017) Nanofiber technology: current status and emerging developments. Prog Polym Sci 70:1–17. https://doi.org/10.1016/j.progpolymsci.2017.03.002

    Article  CAS  Google Scholar 

  9. Xue J, Xie J, Liu W, Xia Y (2017) Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res 50:1976–1987. https://doi.org/10.1021/acs.accounts.7b00218

    Article  CAS  Google Scholar 

  10. Ye K, Kuang H, You Z et al (2019) Electrospun nanofibers for tissue engineering with drug loading and release. Pharmaceutics 11:1–17. https://doi.org/10.3390/pharmaceutics11040182

    Article  CAS  Google Scholar 

  11. Mohammadalizadeh Z, Karbasi S, Arasteh S (2020) Physical, mechanical and biological evaluation of poly (3-hydroxybutyrate)-chitosan/MWNTs as a novel electrospun scaffold for cartilage tissue engineering applications. Polym Technol Mater 59:417–429. https://doi.org/10.1080/25740881.2019.1647244

    Article  CAS  Google Scholar 

  12. Toloue EB, Karbasi S, Salehi H, Rafienia M (2019) Potential of an electrospun composite scaffold of poly (3-hydroxybutyrate)-chitosan/alumina nanowires in bone tissue engineering applications. Mater Sci Eng C 99:1075–1091. https://doi.org/10.1016/j.msec.2019.02.062

    Article  CAS  Google Scholar 

  13. Keikhaei S, Mohammadalizadeh Z, Karbasi S, Salimi A (2019) Evaluation of the effects of β-tricalcium phosphate on physical, mechanical and biological properties of Poly (3-hydroxybutyrate)/chitosan electrospun scaffold for cartilage tissue engineering applications. Mater Technol 34:615–625. https://doi.org/10.1080/10667857.2019.1611053

    Article  CAS  Google Scholar 

  14. Karbasi S, Alizadeh ZM (2017) Effects of multi-wall carbon nanotubes on structural and mechanical properties of poly(3-hydroxybutyrate)/chitosan electrospun scaffolds for cartilage tissue engineering. Bull Mater Sci 40:1247–1253. https://doi.org/10.1007/s12034-017-1479-9

    Article  CAS  Google Scholar 

  15. Aragon J, Navascues N, Mendoza G, Irusta S (2017) Laser-treated electrospun fibers loaded with nano-hydroxyapatite for bone tissue engineering. Int J Pharm 525:112–122. https://doi.org/10.1016/j.ijpharm.2017.04.022

    Article  CAS  Google Scholar 

  16. Aragón J, Salerno S, De Bartolo L et al (2018) Polymeric electrospun scaffolds for bone morphogenetic protein 2 delivery in bone tissue engineering. J Colloid Interface Sci 531:126–137. https://doi.org/10.1016/j.jcis.2018.07.029

    Article  CAS  Google Scholar 

  17. Aldana AA, Abraham GA (2017) Current advances in electrospun gelatin-based scaffolds for tissue engineering applications. Int J Pharm 523:441–453. https://doi.org/10.1016/j.ijpharm.2016.09.044

    Article  CAS  Google Scholar 

  18. Semitela Â, Girão AF, Fernandes C et al (2020) Electrospinning of bioactive polycaprolactone-gelatin nanofibres with increased pore size for cartilage tissue engineering applications. J Biomater Appl 35:471–484. https://doi.org/10.1177/0885328220940194

    Article  CAS  Google Scholar 

  19. Rose JB, Sidney LE, Patient J et al (2019) In vitro evaluation of electrospun blends of gelatin and PCL for application as a partial thickness corneal graft. J Biomed Mater Res Part A 107:828–838. https://doi.org/10.1002/jbm.a.36598

    Article  CAS  Google Scholar 

  20. Tığlı RS, Kazaroğlu NM, Mavış B, Gümüşderelioğlu M (2011) Cellular behavior on epidermal growth factor (EGF)-immobilized PCL/gelatin nanofibrous scaffolds. J Biomater Sci Polym Ed 22:207–223. https://doi.org/10.1163/092050609X12591500475424

    Article  CAS  Google Scholar 

  21. Chong E, Phan T, Lim I et al (2007) Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater 3:321–330. https://doi.org/10.1016/j.actbio.2007.01.002

    Article  CAS  Google Scholar 

  22. Basar AO, Castro S, Torres-Giner S et al (2017) Novel poly(ε-caprolactone)/gelatin wound dressings prepared by emulsion electrospinning with controlled release capacity of Ketoprofen anti-inflammatory drug. Mater Sci Eng C 81:459–468. https://doi.org/10.1016/j.msec.2017.08.025

    Article  CAS  Google Scholar 

  23. Gluck JM, Rahgozar P, Ingle NP et al (2011) Hybrid coaxial electrospun nanofibrous scaffolds with limited immunological response created for tissue engineering. J Biomed Mater Res Part B Appl Biomater 99 B:180–190. https://doi.org/10.1002/jbm.b.31885

    Article  CAS  Google Scholar 

  24. Powell HM, Boyce ST (2009) Engineered human skin fabricated using electrospun collagen–PCL blends: morphogenesis and mechanical properties. Tissue Eng Part A 15:2177–2187. https://doi.org/10.1089/ten.tea.2008.0473

    Article  Google Scholar 

  25. Fernández-Pérez J, Kador KE, Lynch AP, Ahearne M (2020) Characterization of extracellular matrix modified poly(ε-caprolactone) electrospun scaffolds with differing fiber orientations for corneal stroma regeneration. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2019.110415

    Article  Google Scholar 

  26. Fadaie M, Mirzaei E, Geramizadeh B, Asvar Z (2018) Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties. Carbohydr Polym 199:628–640. https://doi.org/10.1016/j.carbpol.2018.07.061

    Article  CAS  Google Scholar 

  27. Bolaina-Lorenzo E, Martinez-Ramos C, Monleón-Pradas M et al (2017) Electrospun polycaprolactone/chitosan scaffolds for nerve tissue engineering: Physicochemical characterization and Schwann cell biocompatibility. Biomed Mater. https://doi.org/10.1088/1748-605X/12/1/015008

    Article  Google Scholar 

  28. Semnani D, Naghashzargar E, Hadjianfar M et al (2017) Evaluation of PCL/chitosan electrospun nanofibers for liver tissue engineering. Int J Polym Mater Polym Biomater 66:149–157. https://doi.org/10.1080/00914037.2016.1190931

    Article  CAS  Google Scholar 

  29. Gomes S, Rodrigues G, Martins G et al (2017) Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering. Int J Biol Macromol 102:1174–1185. https://doi.org/10.1016/j.ijbiomac.2017.05.004

    Article  CAS  Google Scholar 

  30. Sharifi F, Atyabi SM, Norouzian D et al (2018) Polycaprolactone/carboxymethyl chitosan nanofibrous scaffolds for bone tissue engineering application. Int J Biol Macromol 115:243–248. https://doi.org/10.1016/j.ijbiomac.2018.04.045

    Article  CAS  Google Scholar 

  31. Gao S, Guo W, Chen M et al (2017) Fabrication and characterization of electrospun nanofibers composed of decellularized meniscus extracellular matrix and polycaprolactone for meniscus tissue engineering. J Mater Chem B 5:2273–2285. https://doi.org/10.1039/c6tb03299k

    Article  CAS  Google Scholar 

  32. Liao N, Unnithan AR, Joshi MK et al (2015) Electrospun bioactive poly (ɛ-caprolactone)–cellulose acetate–dextran antibacterial composite mats for wound dressing applications. Colloids Surf A Physicochem Eng Asp 469:194–201. https://doi.org/10.1016/j.colsurfa.2015.01.022

    Article  CAS  Google Scholar 

  33. Trinca RB, Westin CB, da Silva JAF, Moraes ÂM (2017) Electrospun multilayer chitosan scaffolds as potential wound dressings for skin lesions. Eur Polym J 88:161–170. https://doi.org/10.1016/j.eurpolymj.2017.01.021

    Article  CAS  Google Scholar 

  34. de Pinho ARG, Odila I, Leferink A et al (2019) Hybrid polyester-hydrogel electrospun scaffolds for tissue engineering applications. Front Bioeng Biotechnol 7:1–13. https://doi.org/10.3389/fbioe.2019.00231

    Article  Google Scholar 

  35. Wang Z, Qian Y, Li L et al (2016) Evaluation of emulsion electrospun polycaprolactone/hyaluronan/epidermal growth factor nanofibrous scaffolds for wound healing. J Biomater Appl 30:686–698. https://doi.org/10.1177/0885328215586907

    Article  CAS  Google Scholar 

  36. Martins AF, Facchi SP, da Câmara PCF et al (2018) Novel poly(ε-caprolactone)/amino-functionalized tannin electrospun membranes as scaffolds for tissue engineering. J Colloid Interface Sci 525:21–30. https://doi.org/10.1016/j.jcis.2018.04.060

    Article  CAS  Google Scholar 

  37. Orash Mahmoud Salehi A, Nourbakhsh MS, Rafienia M et al (2020) Corneal stromal regeneration by hybrid oriented poly (ε-caprolactone)/lyophilized silk fibroin electrospun scaffold. Int J Biol Macromol 161:377–388. https://doi.org/10.1016/j.ijbiomac.2020.06.045

    Article  CAS  Google Scholar 

  38. Miguel SP, Simões D, Moreira AF et al (2019) Production and characterization of electrospun silk fibroin based asymmetric membranes for wound dressing applications. Int J Biol Macromol 121:524–535. https://doi.org/10.1016/j.ijbiomac.2018.10.041

    Article  CAS  Google Scholar 

  39. Behtaj S, Karamali F, Masaeli E et al (2020) Electrospun PGS/PCL, PLLA/PCL, PLGA/PCL and pure PCL scaffolds for retinal progenitor cell cultivation. Biochem Eng J. https://doi.org/10.1016/j.bej.2020.107846

    Article  Google Scholar 

  40. Kupka V, Dvoráková E, Manakhov A et al (2020) Well-blended PCL/PEO electrospun nanofibers with functional properties enhanced by plasma processing. Polymers (Basel) 12:1–16. https://doi.org/10.3390/polym12061403

    Article  CAS  Google Scholar 

  41. Baudequin T, Gaut L, Mueller M et al (2017) The osteogenic and tenogenic differentiation potential of C3H10T1/2 (mesenchymal stem cell model) cultured on PCL/PLA electrospun scaffolds in the absence of specific differentiation medium. Materials (Basel) 10:1–19. https://doi.org/10.3390/ma10121387

    Article  CAS  Google Scholar 

  42. Aghdam RM, Najarian S, Shakhesi S et al (2012) Investigating the effect of PGA on physical and mechanical properties of electrospun PCL/PGA blend nanofibers. J Appl Polym Sci 124:123–131. https://doi.org/10.1002/app.35071

    Article  CAS  Google Scholar 

  43. Hasan A, Soliman S, El Hajj F et al (2018) Fabrication and in vitro characterization of a tissue engineered PCL-PLLA heart valve. Sci Rep 8:1–13. https://doi.org/10.1038/s41598-018-26452-y

    Article  CAS  Google Scholar 

  44. Castilho M, Feyen D, Flandes-Iparraguirre M et al (2017) Melt electrospinning writing of poly-hydroxymethylglycolide-co-ε-caprolactone-based scaffolds for cardiac tissue engineering. Adv Healthc Mater 6:1–9. https://doi.org/10.1002/adhm.201700311

    Article  CAS  Google Scholar 

  45. De-Paula MMM, Ghannadian P, Afewerki S et al (2018) Understanding the impact of crosslinked PCL/PEG/GelMA electrospun nanofibers on bactericidal activity. bioRxiv. https://doi.org/10.1101/322321

    Article  Google Scholar 

  46. Lobo AO, Afewerki S, de Paula MMM et al (2018) Electrospun nanofiber blend with improved mechanical and biological performance. Int J Nanomed 13:7891–7903. https://doi.org/10.2147/IJN.S175619

    Article  CAS  Google Scholar 

  47. Mizuno M, Kuboki Y (2001) Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen. J Biochem 129:133–138. https://doi.org/10.1093/oxfordjournals.jbchem.a002824

    Article  CAS  Google Scholar 

  48. Han J, Chen T-X, Branford-White CJ, Zhu L-M (2009) Electrospun shikonin-loaded PCL/PTMC composite fiber mats with potential biomedical applications. Int J Pharm 382:215–221. https://doi.org/10.1016/j.ijpharm.2009.07.027

    Article  CAS  Google Scholar 

  49. Joseph B, Augustine R, Kalarikkal N et al (2019) Recent advances in electrospun polycaprolactone based scaffolds for wound healing and skin bioengineering applications. Mater Today Commun 19:319–335. https://doi.org/10.1016/j.mtcomm.2019.02.009

    Article  CAS  Google Scholar 

  50. Kim G-M, Le KHT, Giannitelli SM et al (2013) Electrospinning of PCL/PVP blends for tissue engineering scaffolds. J Mater Sci Mater Med 24:1425–1442. https://doi.org/10.1007/s10856-013-4893-6

    Article  CAS  Google Scholar 

  51. Munj HR, Tomasko DL (2017) Polycaprolactone-polymethyl methacrylate electrospun blends for biomedical applications. Polym Sci Ser A 59:695–707. https://doi.org/10.1134/S0965545X17050121

    Article  CAS  Google Scholar 

  52. Vogt L, Rivera LR, Liverani L et al (2019) Poly(ε-caprolactone)/poly(glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents. Mater Sci Eng C 103:109712. https://doi.org/10.1016/j.msec.2019.04.091

    Article  CAS  Google Scholar 

  53. Salehi S, Fathi M, Javanmard SH et al (2014) Generation of PGS/PCL blend nanofibrous scaffolds mimicking corneal stroma structure. Macromol Mater Eng 299:455–469. https://doi.org/10.1002/mame.201300187

    Article  CAS  Google Scholar 

  54. Rai R, Tallawi M, Grigore A, Boccaccini AR (2012) Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): a review. Prog Polym Sci 37:1051–1078. https://doi.org/10.1016/j.progpolymsci.2012.02.001

    Article  CAS  Google Scholar 

  55. Zhou X, Pan Y, Liu R et al (2019) Biocompatibility and biodegradation properties of polycaprolactone/polydioxanone composite scaffolds prepared by blend or co-electrospinning. J Bioact Compat Polym 34:115–130. https://doi.org/10.1177/0883911519835569

    Article  CAS  Google Scholar 

  56. Han D, Song J, Ding X et al (2007) Fabrication and characterization of self-doped poly(aniline-co-anthranilic acid) nanorods in bundles. Mater Chem Phys 105:380–384. https://doi.org/10.1016/j.matchemphys.2007.05.002

    Article  CAS  Google Scholar 

  57. Guler Z, Silva JC, Sezai Sarac A (2017) RGD functionalized poly(ε-caprolactone)/poly(m-anthranilic acid) electrospun nanofibers as high-performing scaffolds for bone tissue engineering RGD functionalized PCL/P3ANA nanofibers. Int J Polym Mater Polym Biomater 66:139–148. https://doi.org/10.1080/00914037.2016.1190929

    Article  CAS  Google Scholar 

  58. Balu R, Kumar TSS, Ramalingam M, Ramakrishna S (2011) Electrospun polycaprolactone/poly (1, 4-butylene adipate-co-polycaprolactam) blends: potential biodegradable scaffold for bone tissue regeneration. J Biomater Tissue Eng. https://doi.org/10.1166/jbt.2011.1004

    Article  Google Scholar 

  59. Xue Y, Yatsenko T, Patel A et al (2017) PEGylated poly(ester amide) elastomer scaffolds for soft tissue engineering. Polym Adv Technol 28:1097–1106. https://doi.org/10.1002/pat.4002

    Article  CAS  Google Scholar 

  60. Kai D, Jiang S, Low ZW, Loh XJ (2015) Engineering highly stretchable lignin-based electrospun nanofibers for potential biomedical applications. J Mater Chem B 3:6194–6204. https://doi.org/10.1039/c5tb00765h

    Article  CAS  Google Scholar 

  61. Zhang J, Duan Y, Wei D et al (2011) Co-electrospun fibrous scaffold-adsorbed DNA for substrate-mediated gene delivery. J Biomed Mater Res Part A 96 A:212–220. https://doi.org/10.1002/jbm.a.32962

    Article  CAS  Google Scholar 

  62. de Cassan D, Becker A, Glasmacher B et al (2020) Blending chitosan-g-poly(caprolactone) with poly(caprolactone) by electrospinning to produce functional fiber mats for tissue engineering applications. J Appl Polym Sci 137:1–11. https://doi.org/10.1002/app.48650

    Article  CAS  Google Scholar 

  63. Arbade GK, Srivastava J, Tripathi V et al (2020) Enhancement of hydrophilicity, biocompatibility and biodegradability of poly(ε-caprolactone) electrospun nanofiber scaffolds using poly(ethylene glycol) and poly(L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering. J Biomater Sci Polym Ed 31:1648–1670. https://doi.org/10.1080/09205063.2020.1769799

    Article  CAS  Google Scholar 

  64. Nguyen TH, Lee BT (2012) The effect of cross-linking on the microstructure, mechanical properties and biocompatibility of electrospun polycaprolactone-gelatin/PLGA-gelatin/PLGA-chitosan hybrid composite. Sci Technol Adv Mater. https://doi.org/10.1088/1468-6996/13/3/035002

    Article  Google Scholar 

  65. Zia KM, Anjum S, Zuber M et al (2014) Synthesis and molecular characterization of chitosan based polyurethane elastomers using aromatic diisocyanate. Int J Biol Macromol 66:26–32. https://doi.org/10.1016/j.ijbiomac.2014.01.073

    Article  CAS  Google Scholar 

  66. Solanki A, Das M, Thakore S (2018) A review on carbohydrate embedded polyurethanes: an emerging area in the scope of biomedical applications. Carbohydr Polym 181:1003–1016. https://doi.org/10.1016/j.carbpol.2017.11.049

    Article  CAS  Google Scholar 

  67. Lei W, Fang C, Zhou X et al (2017) Thermal properties of polyurethane elastomer with different flexible molecular chain based on para-phenylene diisocyanate. J Mater Sci Technol 33:1424–1432. https://doi.org/10.1016/j.jmst.2017.05.014

    Article  CAS  Google Scholar 

  68. Joseph J, Patel RM, Wenham A, Smith JR (2018) Biomedical applications of polyurethane materials and coatings. Trans IMF 96:121–129. https://doi.org/10.1080/00202967.2018.1450209

    Article  CAS  Google Scholar 

  69. Marzec M, Kucińska-Lipka J, Kalaszczyńska I, Janik H (2017) Development of polyurethanes for bone repair. Mater Sci Eng C 80:736–747. https://doi.org/10.1016/j.msec.2017.07.047

    Article  CAS  Google Scholar 

  70. Bercea M, Gradinaru LM, Mandru M et al (2019) Intermolecular interactions and self-assembling of polyurethane with poly(vinyl alcohol) in aqueous solutions. J Mol Liq 274:562–567. https://doi.org/10.1016/j.molliq.2018.11.018

    Article  CAS  Google Scholar 

  71. Naureen B, Haseeb ASMA, Basirun WJ, Muhamad F (2021) Recent advances in tissue engineering scaffolds based on polyurethane and modified polyurethane. Mater Sci Eng C 118:111228. https://doi.org/10.1016/j.msec.2020.111228

    Article  CAS  Google Scholar 

  72. Gostev AA, Shundrina IK, Pastukhov VI et al (2020) In vivo stability of polyurethane-based electrospun vascular grafts in terms of chemistry and mechanics. Polymers (Basel) 12:845. https://doi.org/10.3390/polym12040845

    Article  CAS  Google Scholar 

  73. Chao CY, Mani MP, Jaganathan SK (2018) Engineering electrospun multicomponent polyurethane scaffolding platform comprising grapeseed oil and honey/propolis for bone tissue regeneration. PLoS ONE 13:1–17. https://doi.org/10.1371/journal.pone.0205699

    Article  CAS  Google Scholar 

  74. Jaganathan SK, Mani MP, Ayyar M, Supriyanto E (2017) Engineered electrospun polyurethane and castor oil nanocomposite scaffolds for cardiovascular applications. J Mater Sci 52:10673–10685. https://doi.org/10.1007/s10853-017-1286-0

    Article  CAS  Google Scholar 

  75. Mani MP, Jaganathan SK, Ismail AF (2019) Appraisal of electrospun textile scaffold comprising polyurethane decorated with ginger nanofibers for wound healing applications. J Ind Text 49:648–662. https://doi.org/10.1177/1528083718795911

    Article  CAS  Google Scholar 

  76. Mani MP, Jaganathan SK (2020) Fabrication and characterization of electrospun polyurethane blended with dietary grapes for skin tissue engineering. J Ind Text 50:655–674. https://doi.org/10.1177/1528083719840628

    Article  CAS  Google Scholar 

  77. Manikandan A, Mani MP, Jaganathan SK et al (2017) Formation of functional nanofibrous electrospun polyurethane and murivenna oil with improved haemocompatibility for wound healing. Polym Test 61:106–113. https://doi.org/10.1016/j.polymertesting.2017.05.008

    Article  CAS  Google Scholar 

  78. Jia L, Prabhakaran MP, Qin X et al (2013) Biocompatibility evaluation of protein-incorporated electrospun polyurethane-based scaffolds with smooth muscle cells for vascular tissue engineering. J Mater Sci 48:5113–5124. https://doi.org/10.1007/s10853-013-7359-9

    Article  CAS  Google Scholar 

  79. Huang C, Chen R, Ke Q et al (2011) Electrospun collagen-chitosan-TPU nanofibrous scaffolds for tissue engineered tubular grafts. Colloids Surf B Biointerfaces 82:307–315. https://doi.org/10.1016/j.colsurfb.2010.09.002

    Article  CAS  Google Scholar 

  80. Le AN-M, Tran NM-P, Phan TB et al (2020) Poloxamer additive as luminal surface modification to modulate wettability and bioactivities of small-diameter polyurethane/polycaprolactone electrospun hollow tube for vascular prosthesis applications. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2020.101771

    Article  Google Scholar 

  81. Ahmed F, Alexandridis P, Shankaran H, Neelamegham S (2001) The ability of poloxamers to inhibit platelet aggregation depends on their physicochemical properties. Thromb Haemost 86:1532–1539. https://doi.org/10.1055/s-0037-1616759

    Article  CAS  Google Scholar 

  82. Bil M, Kijeńska-Gawrońska E, Głodkowska-Mrówka E et al (2020) Design and in vitro evaluation of electrospun shape memory polyurethanes for self-fitting tissue engineering grafts and drug delivery systems. Mater Sci Eng C 110:110675. https://doi.org/10.1016/j.msec.2020.110675

    Article  CAS  Google Scholar 

  83. Caracciolo PC, Rial-Hermida MI, Montini-Ballarin F et al (2017) Surface-modified bioresorbable electrospun scaffolds for improving hemocompatibility of vascular grafts. Mater Sci Eng C 75:1115–1127. https://doi.org/10.1016/j.msec.2017.02.151

    Article  CAS  Google Scholar 

  84. Wang H, Feng Y, An B et al (2012) Fabrication of PU/PEGMA crosslinked hybrid scaffolds by in situ UV photopolymerization favoring human endothelial cells growth for vascular tissue engineering. J Mater Sci Mater Med 23:1499–1510. https://doi.org/10.1007/s10856-012-4613-7

    Article  CAS  Google Scholar 

  85. Wang H, Feng Y, Fang Z et al (2012) Co-electrospun blends of PU and PEG as potential biocompatible scaffolds for small-diameter vascular tissue engineering. Mater Sci Eng C 32:2306–2315. https://doi.org/10.1016/j.msec.2012.07.001

    Article  CAS  Google Scholar 

  86. Karahaliloğlu Z (2017) Electrospun PU-PEG and PU-PC hybrid scaffolds for vascular tissue engineering. Fibers Polym 18:2135–2145. https://doi.org/10.1007/s12221-017-7368-4

    Article  CAS  Google Scholar 

  87. Jiang L, Jiang Y, Stiadle J et al (2019) Electrospun nanofibrous thermoplastic polyurethane/poly(glycerol sebacate) hybrid scaffolds for vocal fold tissue engineering applications. Mater Sci Eng C 94:740–749. https://doi.org/10.1016/j.msec.2018.10.027

    Article  CAS  Google Scholar 

  88. Ye K, Liu D, Kuang H et al (2019) Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. J Colloid Interface Sci 534:625–636. https://doi.org/10.1016/j.jcis.2018.09.071

    Article  CAS  Google Scholar 

  89. Persson M, Lehenkari PP, Berglin L et al (2018) Osteogenic differentiation of human mesenchymal stem cells in a 3D woven scaffold. Sci Rep 8:10457. https://doi.org/10.1038/s41598-018-28699-x

    Article  CAS  Google Scholar 

  90. Lee S, Joshi MK, Tiwari AP et al (2018) Lactic acid assisted fabrication of bioactive three-dimensional PLLA/β-TCP fibrous scaffold for biomedical application. Chem Eng J 347:771–781. https://doi.org/10.1016/j.cej.2018.04.158

    Article  CAS  Google Scholar 

  91. Hoveizi E, Nabiuni M, Parivar K et al (2014) Functionalisation and surface modification of electrospun polylactic acid scaffold for tissue engineering. Cell Biol Int 38:41–49. https://doi.org/10.1002/cbin.10178

    Article  CAS  Google Scholar 

  92. Kang Y, Chen P, Shi X et al (2018) Multilevel structural stereocomplex polylactic acid/collagen membranes by pattern electrospinning for tissue engineering. Polymer (Guildf) 156:250–260. https://doi.org/10.1016/j.polymer.2018.10.009

    Article  CAS  Google Scholar 

  93. Patel DK, Dutta SD, Hexiu J et al (2020) Bioactive electrospun nanocomposite scaffolds of poly(lactic acid)/cellulose nanocrystals for bone tissue engineering. Int J Biol Macromol 162:1429–1441. https://doi.org/10.1016/j.ijbiomac.2020.07.246

    Article  CAS  Google Scholar 

  94. Huan S, Liu G, Cheng W et al (2018) Electrospun poly(lactic acid)-based fibrous nanocomposite reinforced by cellulose nanocrystals: impact of fiber uniaxial alignment on microstructure and mechanical properties. Biomacromolecules 19:1037–1046. https://doi.org/10.1021/acs.biomac.8b00023

    Article  CAS  Google Scholar 

  95. Zadeh KM, Luyt AS, Zarif L et al (2019) Electrospun polylactic acid/date palm polyphenol extract nanofibres for tissue engineering applications. Emergent Mater 2:141–151. https://doi.org/10.1007/s42247-019-00042-8

    Article  CAS  Google Scholar 

  96. Gao Y, Shao W, Qian W et al (2018) Biomineralized poly (L-lactic-co-glycolic acid)-tussah silk fibroin nanofiber fabric with hierarchical architecture as a scaffold for bone tissue engineering. Mater Sci Eng C 84:195–207. https://doi.org/10.1016/j.msec.2017.11.047

    Article  CAS  Google Scholar 

  97. Kanmaz D, Aylin Karahan Toprakci H, Olmez H, Toprakci O (2018) Electrospun polylactic acid based nanofibers for biomedical applications. Mater Sci Res India 15:224–240. https://doi.org/10.13005/msri/150304

    Article  CAS  Google Scholar 

  98. Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24:4353–4364. https://doi.org/10.1016/S0142-9612(03)00339-9

    Article  CAS  Google Scholar 

  99. Paragkumar NT, Edith D, Six J-L (2006) Surface characteristics of PLA and PLGA films. Appl Surf Sci 253:2758–2764. https://doi.org/10.1016/j.apsusc.2006.05.047

    Article  CAS  Google Scholar 

  100. Zhao R, Li X, Sun B et al (2015) Nitrofurazone-loaded electrospun PLLA/sericin-based dual-layer fiber mats for wound dressing applications. RSC Adv 5:16940–16949. https://doi.org/10.1039/C4RA16208K

    Article  CAS  Google Scholar 

  101. Akturk O, Tezcaner A, Bilgili H et al (2011) Evaluation of sericin/collagen membranes as prospective wound dressing biomaterial. J Biosci Bioeng 112:279–288. https://doi.org/10.1016/j.jbiosc.2011.05.014

    Article  CAS  Google Scholar 

  102. Xu Y, Liu B, Zou L et al (2020) Preparation and characterization of PLLA/chitosan-graft-poly (ε-caprolactone) (CS-g-PCL) composite fibrous mats: the microstructure, performance and proliferation assessment. Int J Biol Macromol 162:320–332. https://doi.org/10.1016/j.ijbiomac.2020.06.164

    Article  CAS  Google Scholar 

  103. Fiqrianti IA, Widiyanti P, Manaf MA et al (2018) Poly-L-Lactic acid (PLLA)-chitosan-collagen electrospun tube for vascular graft application. J Funct Biomater. https://doi.org/10.3390/jfb9020032

    Article  Google Scholar 

  104. Li JB, Han J, Ren J (2012) Interaction of human fibroblasts with electrospun composites gelatin/PLLA, chitosan/PLLA and PLLA fibrous scaffolds. J Shanghai Jiaotong Univ 17:559–566. https://doi.org/10.1007/s12204-012-1325-6

    Article  Google Scholar 

  105. Shalumon KT, Deepthi S, Anupama MS et al (2015) Fabrication of poly (l-lactic acid)/gelatin composite tubular scaffolds for vascular tissue engineering. Int J Biol Macromol 72:1048–1055. https://doi.org/10.1016/j.ijbiomac.2014.09.058

    Article  CAS  Google Scholar 

  106. Liu Y, Cui H, Zhuang X et al (2014) Electrospinning of aniline pentamer-graft-gelatin/PLLA nanofibers for bone tissue engineering. Acta Biomater 10:5074–5080. https://doi.org/10.1016/j.actbio.2014.08.036

    Article  CAS  Google Scholar 

  107. Zhao X, Komatsu DE, Hadjiargyrou M (2016) Delivery of rhBMP-2 plasmid DNA complexes via a PLLA/collagen electrospun scaffold induces ectopic bone formation. J Biomed Nanotechnol 12:1285–1296. https://doi.org/10.1166/jbn.2016.2250

    Article  CAS  Google Scholar 

  108. Salehi M, Farzamfar S, Bastami F, Tajerian R (2016) Fabrication and characterization of electrospun plla/collagen nanofibrous scaffold coated with chitosan to sustain release of aloe vera gel for skin tissue engineering. Biomed Eng Appl Basis Commun 28:1–8. https://doi.org/10.4015/S1016237216500356

    Article  CAS  Google Scholar 

  109. Bertuoli PT, Ordono J, Armelin E et al (2019) Electrospun conducting and biocompatible uniaxial and core-shell fibers having poly(lactic acid), poly(ethylene glycol), and polyaniline for cardiac tissue engineering. ACS Omega 4:3660–3672. https://doi.org/10.1021/acsomega.8b03411

    Article  CAS  Google Scholar 

  110. Ghafari R, Scaffaro R, Maio A et al (2020) Processing-structure-property relationships of electrospun PLA-PEO membranes reinforced with enzymatic cellulose nanofibers. Polym Test 81:106182. https://doi.org/10.1016/j.polymertesting.2019.106182

    Article  CAS  Google Scholar 

  111. Herrero-Herrero M, Gómez-Tejedor JA, Vallés-Lluch A (2018) PLA/PCL electrospun membranes of tailored fibres diameter as drug delivery systems. Eur Polym J 99:445–455. https://doi.org/10.1016/j.eurpolymj.2017.12.045

    Article  CAS  Google Scholar 

  112. Perumal G, Pappuru S, Chakraborty D et al (2017) Synthesis and characterization of curcumin loaded PLA—hyperbranched polyglycerol electrospun blend for wound dressing applications. Mater Sci Eng C 76:1196–1204. https://doi.org/10.1016/j.msec.2017.03.200

    Article  CAS  Google Scholar 

  113. Arrieta MP, López J, López D et al (2016) Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Ind Crops Prod 93:290–301. https://doi.org/10.1016/j.indcrop.2015.12.058

    Article  CAS  Google Scholar 

  114. Jiang S, Song P, Guo H et al (2017) Blending PLLA/tannin-grafted PCL fiber membrane for skin tissue engineering. J Mater Sci 52:1617–1624. https://doi.org/10.1007/s10853-016-0455-x

    Article  CAS  Google Scholar 

  115. Montini Ballarin F, Caracciolo PC, Blotta E et al (2014) Optimization of poly(l-lactic acid)/segmented polyurethane electrospinning process for the production of bilayered small-diameter nanofibrous tubular structures. Mater Sci Eng C 42:489–499. https://doi.org/10.1016/j.msec.2014.05.074

    Article  CAS  Google Scholar 

  116. Ojaghi M, Soleimanifar F, Kazemi A et al (2019) Electrospun poly-l-lactic acid/polyvinyl alcohol nanofibers improved insulin-producing cell differentiation potential of human adipose-derived mesenchymal stem cells. J Cell Biochem 120:9917–9926. https://doi.org/10.1002/jcb.28274

    Article  CAS  Google Scholar 

  117. Mahboudi H, Sadat Hosseini F, Kehtari M et al (2020) The effect of PLLA/PVA nanofibrous scaffold on the chondrogenesis of human induced pluripotent stem cells. Int J Polym Mater Polym Biomater 69:669–677. https://doi.org/10.1080/00914037.2019.1600516

    Article  CAS  Google Scholar 

  118. Wagner A, Poursorkhabi V, Mohanty AK, Misra M (2014) Analysis of porous electrospun fibers from poly(L-lactic acid)/poly(3-hydroxybutyrate- co-3-hydroxyvalerate) blends. ACS Sustain Chem Eng 2:1976–1982. https://doi.org/10.1021/sc5000495

    Article  CAS  Google Scholar 

  119. Wang X, Yan H, Shen Y et al (2020) Shape memory and osteogenesis capabilities of the electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) modified poly(l-lactide) fibrous mats. Tissue Eng Part A. https://doi.org/10.1089/ten.tea.2020.0086

    Article  Google Scholar 

  120. Ziemba AM, Lane KP, San Segundo IM et al (2018) Poly-l-lactic acid-co-poly(pentadecalactone) electrospun fibers result in greater neurite outgrowth of chick dorsal root ganglia in vitro compared to poly-l-lactic acid fibers. ACS Biomater Sci Eng 4:1491–1497. https://doi.org/10.1021/acsbiomaterials.8b00013

    Article  CAS  Google Scholar 

  121. Boodagh P, Guo DJ, Nagiah N, Tan W (2016) Evaluation of electrospun PLLA/PEGDMA polymer coatings for vascular stent material. J Biomater Sci Polym Ed 27:1086–1099. https://doi.org/10.1080/09205063.2016.1176715

    Article  CAS  Google Scholar 

  122. McKeon KD, Lewis A, Freeman JW (2010) Electrospun poly(D, L-lactide) and polyaniline scaffold characterization. J Appl Polym Sci 115:1566–1572. https://doi.org/10.1002/app.31296

    Article  CAS  Google Scholar 

  123. Den Dunnen WFA, Schakenraad JM, Zondervan GJ et al (1993) A new PLLA/PCL copolymer for nerve regeneration. J Mater Sci Mater Med 4:521–525. https://doi.org/10.1007/BF00120133

    Article  Google Scholar 

  124. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M et al (2010) Bio-functionalized PCL nanofibrous scaffolds for nerve tissue engineering. Mater Sci Eng C 30:1129–1136. https://doi.org/10.1016/j.msec.2010.06.004

    Article  CAS  Google Scholar 

  125. Kijeńska E, Prabhakaran MP, Swieszkowski W et al (2012) Electrospun bio-composite P(LLA-CL)/collagen I/collagen III scaffolds for nerve tissue engineering. J Biomed Mater Res Part B Appl Biomater 100B:1093–1102. https://doi.org/10.1002/jbm.b.32676

    Article  CAS  Google Scholar 

  126. Ghaffari-Bohlouli P, Shahrousvand M, Zahedi P (2019) Performance evaluation of poly (L-lactide-co-D, L-lactide)/poly (acrylic acid) blends and their nanofibers for tissue engineering applications. Int J Biol Macromol 122:1008–1016. https://doi.org/10.1016/j.ijbiomac.2018.09.046

    Article  CAS  Google Scholar 

  127. Gentile P, Chiono V, Carmagnola I, Hatton PV (2014) An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15:3640–3659. https://doi.org/10.3390/ijms15033640

    Article  CAS  Google Scholar 

  128. Vázquez N, Sánchez-Arévalo F, MacIel-Cerda A et al (2019) Influence of the PLGA/gelatin ratio on the physical, chemical and biological properties of electrospun scaffolds for wound dressings. Biomed Mater. https://doi.org/10.1088/1748-605X/ab1741

    Article  Google Scholar 

  129. Prabhakaran MP, Kai D, Ghasemi-Mobarakeh L, Ramakrishna S (2011) Electrospun biocomposite nanofibrous patch for cardiac tissue engineering. Biomed Mater. https://doi.org/10.1088/1748-6041/6/5/055001

    Article  Google Scholar 

  130. Han J, Lazarovici P, Pomerantz C et al (2011) Co-electrospun blends of PLGA, gelatin, and elastin as potential nonthrombogenic scaffolds for vascular tissue engineering. Biomacromolecules 12:399–408. https://doi.org/10.1021/bm101149r

    Article  CAS  Google Scholar 

  131. Duan B, Yuan X, Zhu Y et al (2006) A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning. Eur Polym J 42:2013–2022. https://doi.org/10.1016/j.eurpolymj.2006.04.021

    Article  CAS  Google Scholar 

  132. Jose MV, Thomas V, Dean DR, Nyairo E (2009) Fabrication and characterization of aligned nanofibrous PLGA/Collagen blends as bone tissue scaffolds. Polymer (Guildf) 50:3778–3785. https://doi.org/10.1016/j.polymer.2009.05.035

    Article  CAS  Google Scholar 

  133. Wang G, Hu X, Lin W et al (2011) Electrospun PLGA-silk fibroin-collagen nanofibrous scaffolds for nerve tissue engineering. Vitr Cell Dev Biol Anim 47:234–240. https://doi.org/10.1007/s11626-010-9381-4

    Article  CAS  Google Scholar 

  134. Evrova O, Hosseini V, Milleret V et al (2016) Hybrid randomly electrospun poly(lactic-co-glycolic acid):poly(ethylene oxide) (PLGA:PEO) fibrous scaffolds enhancing myoblast differentiation and alignment. ACS Appl Mater Interfaces 8:31574–31586. https://doi.org/10.1021/acsami.6b11291

    Article  CAS  Google Scholar 

  135. Hiep NT, Lee BT (2010) Electro-spinning of PLGA/PCL blends for tissue engineering and their biocompatibility. J Mater Sci Mater Med 21:1969–1978. https://doi.org/10.1007/s10856-010-4048-y

    Article  CAS  Google Scholar 

  136. DiBalsi MJ (2016) Fabrication and characterization of heparin-immobilized electrospun nanofibers for vascular suture applications. ProQuest Diss Theses 51

  137. Liang J, Karakoçak BB, Struckhoff JJ, Ravi N (2016) Synthesis and characterization of injectable sulfonate-containing hydrogels. Biomacromolecules 17:4064–4074. https://doi.org/10.1021/acs.biomac.6b01368

    Article  CAS  Google Scholar 

  138. Bresan S, Sznajder A, Hauf W et al (2016) Polyhydroxyalkanoate (PHA) granules have no phospholipids. Sci Rep 6:26612. https://doi.org/10.1038/srep26612

    Article  CAS  Google Scholar 

  139. Sanhueza C, Acevedo F, Rocha S et al (2019) Polyhydroxyalkanoates as biomaterial for electrospun scaffolds. Int J Biol Macromol 124:102–110. https://doi.org/10.1016/j.ijbiomac.2018.11.068

    Article  CAS  Google Scholar 

  140. Soleymani Eil Bakhtiari S, Karbasi S, Toloue EB (2021) Modified poly(3-hydroxybutyrate)-based scaffolds in tissue engineering applications: a review. Int J Biol Macromol 166:986–998. https://doi.org/10.1016/j.ijbiomac.2020.10.255

    Article  CAS  Google Scholar 

  141. Sanhueza C, Hermosilla J, Bugallo-Casal A et al (2021) One-step electrospun scaffold of dual-sized gelatin/poly-3-hydroxybutyrate nano/microfibers for skin regeneration in diabetic wound. Mater Sci Eng C 119:111602. https://doi.org/10.1016/j.msec.2020.111602

    Article  CAS  Google Scholar 

  142. Zhijiang C, Qin Z, Xianyou S, Yuanpei L (2017) Zein/poly(3-hydroxybutyrate-co-4-hydroxybutyrate) electrospun blend fiber scaffolds: preparation, characterization and cytocompatibility. Mater Sci Eng C 71:797–806. https://doi.org/10.1016/j.msec.2016.10.053

    Article  CAS  Google Scholar 

  143. Ma G, Yang D, Wang K et al (2010) Organic-soluble chitosan/polyhydroxybutyrate ultrafine fibers as skin regeneration prepared by electrospinning. J Appl Polym Sci 118:3619–3624. https://doi.org/10.1002/app.32671

    Article  CAS  Google Scholar 

  144. Sadeghi D, Karbasi S, Razavi S et al (2016) Electrospun poly(hydroxybutyrate)/chitosan blend fibrous scaffolds for cartilage tissue engineering. J Appl Polym Sci. https://doi.org/10.1002/app.44171

    Article  Google Scholar 

  145. Karimi Tar A, Karbasi S, Naghashzargar E, Salehi H (2020) Biodegradation and cellular evaluation of aligned and random poly (3-hydroxybutyrate)/chitosan electrospun scaffold for nerve tissue engineering applications. Mater Technol 35:92–101. https://doi.org/10.1080/10667857.2019.1658170

    Article  CAS  Google Scholar 

  146. Karbasi S, Fekrat F, Semnani D et al (2016) Evaluation of structural and mechanical properties of electrospun nano-micro hybrid of poly hydroxybutyrate-chitosan/silk scaffold for cartilage tissue engineering. Adv Biomed Res 5:180. https://doi.org/10.4103/2277-9175.194802

    Article  CAS  Google Scholar 

  147. Naderi P, Zarei M, Karbasi S, Salehi H (2020) Evaluation of the effects of keratin on physical, mechanical and biological properties of poly (3-hydroxybutyrate) electrospun scaffold: potential application in bone tissue engineering. Eur Polym J 124:109502. https://doi.org/10.1016/j.eurpolymj.2020.109502

    Article  CAS  Google Scholar 

  148. Salvatore L, Carofiglio VE, Stufano P et al (2018) Potential of electrospun poly(3-hydroxybutyrate)/collagen blends for tissue engineering applications. J Healthc Eng. https://doi.org/10.1155/2018/6573947

    Article  Google Scholar 

  149. Nagiah N, Madhavi L, Anitha R et al (2013) Electrospinning of poly (3-hydroxybutyric acid) and gelatin blended thin films: fabrication, characterization, and application in skin regeneration. Polym Bull 70:2337–2358. https://doi.org/10.1007/s00289-013-0956-6

    Article  CAS  Google Scholar 

  150. Baradaran-Rafii A, Biazar E, Heidari-Keshel S (2015) Cellular response of limbal stem cells on PHBV/gelatin nanofibrous scaffold for ocular epithelial regeneration. Int J Polym Mater Polym Biomater 64:879–887. https://doi.org/10.1080/00914037.2015.1030658

    Article  CAS  Google Scholar 

  151. Kuppan P, Sethuraman S, Krishnan UM (2014) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-based nanofibrous scaffolds to support functional esophageal epithelial cells towards engineering the esophagus. J Biomater Sci Polym Ed 25:574–593. https://doi.org/10.1080/09205063.2014.884427

    Article  CAS  Google Scholar 

  152. Zhijiang C, Yi X, Haizheng Y et al (2016) Poly(hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: preparation, characterization and cytocompatibility. Mater Sci Eng C 58:757–767. https://doi.org/10.1016/j.msec.2015.09.048

    Article  CAS  Google Scholar 

  153. Goonoo N, Khanbabaee B, Steuber M et al (2017) κ-Carrageenan enhances the biomineralization and osteogenic differentiation of electrospun polyhydroxybutyrate and polyhydroxybutyrate valerate fibers. Biomacromolecules 18:1563–1573. https://doi.org/10.1021/acs.biomac.7b00150

    Article  CAS  Google Scholar 

  154. Chan SY, Chan BQY, Liu Z et al (2017) Electrospun pectin-polyhydroxybutyrate nanofibers for retinal tissue engineering. ACS Omega 2:8959–8968. https://doi.org/10.1021/acsomega.7b01604

    Article  CAS  Google Scholar 

  155. Asran AS, Razghandi K, Aggarwal N et al (2010) Nanofibers from blends of polyvinyl alcohol and polyhydroxy butyrate as a potential scaffold material for. Biomacromolecules 11:3413–3421

    Article  CAS  Google Scholar 

  156. Bhattacharjee A, Kumar K, Arora A, Katti DS (2016) Fabrication and characterization of pluronic modified poly(hydroxybutyrate) fibers for potential wound dressing applications. Mater Sci Eng C 63:266–273. https://doi.org/10.1016/j.msec.2016.02.074

    Article  CAS  Google Scholar 

  157. Daranarong D, Chan RTH, Wanandy NS et al (2014) Electrospun polyhydroxybutyrate and poly(L-lactide-co-ε-caprolactone) composites as nanofibrous scaffolds. Biomed Res Int. https://doi.org/10.1155/2014/741408

    Article  Google Scholar 

  158. Cheng ML, Chen PY, Lan CH, Sun YM (2011) Structure, mechanical properties and degradation behaviors of the electrospun fibrous blends of PHBHHx/PDLLA. Polymer (Guildf) 52:1391–1401. https://doi.org/10.1016/j.polymer.2011.01.039

    Article  CAS  Google Scholar 

  159. Amini F, Semnani D, Karbasi S, Banitaba SN (2019) A novel bilayer drug-loaded wound dressing of PVDF and PHB/chitosan nanofibers applicable for post-surgical ulcers. Int J Polym Mater Polym Biomater 68:772–777. https://doi.org/10.1080/00914037.2018.1506982

    Article  CAS  Google Scholar 

  160. Masaeli E, Morshed M, Nasr-Esfahani MH et al (2013) Fabrication, characterization and cellular compatibility of poly(hydroxy alkanoate) composite nanofibrous scaffolds for nerve tissue engineering. PLoS ONE 8:16–18. https://doi.org/10.1371/journal.pone.0057157

    Article  CAS  Google Scholar 

  161. Chang HC, Sun T, Sultana N et al (2016) Conductive PEDOT:PSS coated polylactide (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun membranes: fabrication and characterization. Mater Sci Eng C 61:396–410. https://doi.org/10.1016/j.msec.2015.12.074

    Article  CAS  Google Scholar 

  162. Hassan MI, Sultana N (2019) In vitro cell viability of PHBV/PLGA nanofibrous membrane for tissue engineering. Malays J Fundam Appl Sci 15:522–527. https://doi.org/10.11113/mjfas.v15n4.1229

    Article  Google Scholar 

  163. Bianco A, Calderone M, Cacciotti I (2013) Electrospun PHBV/PEO co-solution blends: microstructure, thermal and mechanical properties. Mater Sci Eng C 33:1067–1077. https://doi.org/10.1016/j.msec.2012.11.030

    Article  CAS  Google Scholar 

  164. Kumar A, Han SS (2017) PVA-based hydrogels for tissue engineering: a review. Int J Polym Mater Polym Biomater 66:159–182. https://doi.org/10.1080/00914037.2016.1190930

    Article  CAS  Google Scholar 

  165. Liu W, Lipner J, Moran CH et al (2015) Generation of electrospun nanofibers with controllable degrees of crimping through a simple, plasticizer-based treatment. Adv Mater 27:2583–2588. https://doi.org/10.1002/adma.201500329

    Article  CAS  Google Scholar 

  166. Alhosseini SN, Moztarzadeh F, Mozafari M et al (2012) Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. Int J Nanomed 7:25–34

    CAS  Google Scholar 

  167. Mohammadi S, Ramakrishna S, Laurent S et al (2019) Fabrication of nanofibrous PVA/alginate-sulfate substrates for growth factor delivery. J Biomed Mater Res Part A 107:403–413. https://doi.org/10.1002/jbm.a.36552

    Article  CAS  Google Scholar 

  168. Irani S, Tavakkoli S, Pezeshki-Modaress M et al (2021) Electrospun nanofibrous alginate sulfate scaffolds promote mesenchymal stem cells differentiation to chondrocytes. J Appl Polym Sci 138:1–12. https://doi.org/10.1002/app.49868

    Article  CAS  Google Scholar 

  169. Chao S, Li Y, Zhao R et al (2018) Synthesis and characterization of tigecycline-loaded sericin/poly(vinyl alcohol) composite fibers via electrospinning as antibacterial wound dressings. J Drug Deliv Sci Technol 44:440–447. https://doi.org/10.1016/j.jddst.2018.01.022

    Article  CAS  Google Scholar 

  170. Gilotra S, Chouhan D, Bhardwaj N et al (2018) Potential of silk sericin based nanofibrous mats for wound dressing applications. Mater Sci Eng C 90:420–432. https://doi.org/10.1016/j.msec.2018.04.077

    Article  CAS  Google Scholar 

  171. Chahal S, Hussain FSJ, Kumar A et al (2016) Fabrication, characterization and in vitro biocompatibility of electrospun hydroxyethyl cellulose/poly (vinyl) alcohol nanofibrous composite biomaterial for bone tissue engineering. Elsevier

    Book  Google Scholar 

  172. Chahala S, Hussain FSJ, Yusoff MM (2013) Characterization of modified cellulose (MC)/poly (vinyl alcohol) electrospun nanofibers for bone tissue engineering. Procedia Eng 53:683–688. https://doi.org/10.1016/j.proeng.2013.02.088

    Article  CAS  Google Scholar 

  173. Lee J, Deng Y (2013) Nanoindentation study of individual cellulose nanowhisker-reinforced PVA electrospun fiber. Polym Bull 70:1205–1219. https://doi.org/10.1007/s00289-012-0842-7

    Article  CAS  Google Scholar 

  174. Teixeira MA, Amorim MTP, Felgueiras HP (2019) PVA/CA based electrospun nanofibers: influence of processing parameters in the fiber diameter. In: IOP conference series: materials science and engineering

  175. Delgado-Rangel LH, Hernández-Vargas J, Becerra-González M et al (2019) Development of collagen/poly(vinyl alcohol)/chondroitin sulfate and collagen/poly(vinyl alcohol)/HA electrospun scaffolds for tissue engineering. Fibers Polym 20:2470–2484. https://doi.org/10.1007/s12221-019-9341-x

    Article  CAS  Google Scholar 

  176. Sundaramurthi D, Vasanthan KS, Kuppan P et al (2012) Electrospun nanostructured chitosan-poly(vinyl alcohol) scaffolds: a biomimetic extracellular matrix as dermal substitute. Biomed Mater. https://doi.org/10.1088/1748-6041/7/4/045005

    Article  Google Scholar 

  177. Zhou Y, Yang D, Chen X et al (2008) Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules 9:349–354. https://doi.org/10.1021/bm7009015

    Article  CAS  Google Scholar 

  178. Gonçalves RP, Ferreira WH, Gouvêa RF, Andrade CT (2017) Effect of chitosan on the properties of electrospun fibers from mixed poly(vinyl alcohol)/chitosan solutions. Mater Res 20:984–993. https://doi.org/10.1590/1980-5373-MR-2016-0618

    Article  Google Scholar 

  179. Alavarse AC, de Oliveira Silva FW, Colque JT et al (2017) Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing. Mater Sci Eng C 77:271–281. https://doi.org/10.1016/j.msec.2017.03.199

    Article  CAS  Google Scholar 

  180. Sosiati H, Yogyakarta UM, Nugroho AW et al (2020) The properties of chitosan nanoemulsion/poly (vinyl alcohol) nanocomposite membranes for wound care treatment. J Eng Sci Technol 15(6):4091–4106

    Google Scholar 

  181. Charernsriwilaiwat N, Opanasopit P, Rojanarata T et al (2010) Preparation and characterization of chitosan-hydroxybenzotriazole/polyvinyl alcohol blend nanofibers by the electrospinning technique. Carbohydr Polym 81:675–680. https://doi.org/10.1016/j.carbpol.2010.03.031

    Article  CAS  Google Scholar 

  182. Adeli H, Khorasani MT, Parvazinia M (2019) Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Int J Biol Macromol 122:238–254. https://doi.org/10.1016/j.ijbiomac.2018.10.115

    Article  CAS  Google Scholar 

  183. Tsai RY, Hung SC, Lai JY et al (2014) Electrospun chitosan-gelatin-polyvinyl alcohol hybrid nanofibrous mats: production and characterization. J Taiwan Inst Chem Eng 45:1975–1981. https://doi.org/10.1016/j.jtice.2013.11.003

    Article  CAS  Google Scholar 

  184. Wu Z, Kong B, Liu R et al (2018) Engineering of corneal tissue through an aligned PVA/collagen composite nanofibrous electrospun scaffold. Nanomaterials. https://doi.org/10.3390/nano8020124

    Article  Google Scholar 

  185. Cho D, Netravali AN, Joo YL (2012) Mechanical properties and biodegradability of electrospun soy protein isolate/PVA hybrid nanofibers. Polym Degrad Stab 97:747–754. https://doi.org/10.1016/j.polymdegradstab.2012.02.007

    Article  CAS  Google Scholar 

  186. Kashef-Saberi MS, Hayati Roodbari N, Parivar K et al (2018) Enhanced osteogenic differentiation of mesenchymal stem cells on electrospun polyethersulfone/poly(vinyl) alcohol/platelet rich plasma nanofibrous scaffolds. ASAIO J 64:e115–e122. https://doi.org/10.1097/MAT.0000000000000781

    Article  CAS  Google Scholar 

  187. Dong C, Yuan X, He M, Yao K (2006) Preparation of PVA/PEI ultra-fine fibers and their composite membrane with PLA by electrospinning. J Biomater Sci Polym Ed 17:631–643. https://doi.org/10.1163/156856206777346287

    Article  CAS  Google Scholar 

  188. Gökmeşe F, Uslu I, Aytimur A (2013) Preparation and characterization of PVA/PVP nanofibers as promising materials for wound dressing. Polym Plast Technol Eng 52:1259–1265. https://doi.org/10.1080/03602559.2013.814144

    Article  CAS  Google Scholar 

  189. Shankhwar N, Kumar M, Mandal BB et al (2016) Electrospun polyvinyl alcohol-polyvinyl pyrrolidone nanofibrous membranes for interactive wound dressing application. J Biomater Sci Polym Ed 27:247–262. https://doi.org/10.1080/09205063.2015.1120474

    Article  CAS  Google Scholar 

  190. Subramanian UM, Kumar SV, Nagiah N, Sivagnanam UT (2014) Fabrication of polyvinyl alcohol–polyvinylpyrrolidone blend scaffolds via electrospinning for tissue engineering applications. Int J Polym Mater Polym Biomater 63:476–485. https://doi.org/10.1080/00914037.2013.854216

    Article  CAS  Google Scholar 

  191. Yang JH, Yoon NS, Park JH et al (2011) Electrospinning fabrication and characterization of poly(vinyl alcohol)/waterborne polyurethane nanofiber membranes in aqueous solution. J Appl Polym Sci 120:2337–2345. https://doi.org/10.1002/app.33435

    Article  CAS  Google Scholar 

  192. Elakkiya T, Sheeja R, Ramadhar K, Natarajan TS (2013) Biocompatibility studies of electrospun nanofibrous membrane of PLLA-PVA blend. J Appl Polym Sci 128:2840–2846. https://doi.org/10.1002/app.38464

    Article  CAS  Google Scholar 

  193. Saudi A, Amini S, Amirpour N et al (2019) Promoting neural cell proliferation and differentiation by incorporating lignin into electrospun poly(vinyl alcohol) and poly(glycerol sebacate) fibers. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2019.110005

    Article  Google Scholar 

  194. Fakhrali A, Semnani D, Salehi H, Ghane M (2020) Electrospun PGS/PCL nanofibers: From straight to sponge and spring-like morphology. Polym Adv Technol 31:3134–3149. https://doi.org/10.1002/pat.5038

    Article  CAS  Google Scholar 

  195. Kharaziha M, Nikkhah M, Shin SR et al (2013) PGS: Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Biomaterials 34:6355–6366. https://doi.org/10.1016/j.biomaterials.2013.04.045

    Article  CAS  Google Scholar 

  196. Shirazaki Parisa, Varshosaz Jaleh, Kharazi AZ (2017) Electrospun gelatin/poly (glycerol sebacate) membrane with controlled release of antibiotics for wound dressing. Adv Biomed Res 6:105

    Article  Google Scholar 

  197. Hu J, Kai D, Ye H et al (2017) Electrospinning of poly(glycerol sebacate)-based nanofibers for nerve tissue engineering. Mater Sci Eng C 70:1089–1094. https://doi.org/10.1016/j.msec.2016.03.035

    Article  CAS  Google Scholar 

  198. Vogt L, Liverani L, Roether JA, Boccaccini AR (2018) Electrospun zein fibers incorporating poly(glycerol sebacate) for soft tissue engineering. Nanomaterials 8:1–16. https://doi.org/10.3390/nano8030150

    Article  CAS  Google Scholar 

  199. Denis P, Wrzecionek M, Gadomska-Gajadhur A, Sajkiewicz P (2019) Poly(glycerol sebacate)-poly(l-lactide) nonwovens. Towards attractive electrospun material for tissue engineering. Polymers (Basel). https://doi.org/10.3390/polym11122113

    Article  Google Scholar 

  200. Sant S, Iyer D, Gaharwar AK et al (2013) Effect of biodegradation and de novo matrix synthesis on the mechanical properties of valvular interstitial cell-seeded polyglycerol sebacate-polycaprolactone scaffolds. Acta Biomater 9:5963–5973. https://doi.org/10.1016/j.actbio.2012.11.014

    Article  CAS  Google Scholar 

  201. Liverani L, Piegat A, Niemczyk A et al (2016) Electrospun fibers of poly(butylene succinate–co–dilinoleic succinate) and its blend with poly(glycerol sebacate) for soft tissue engineering applications. Eur Polym J 81:295–306. https://doi.org/10.1016/j.eurpolymj.2016.06.009

    Article  CAS  Google Scholar 

  202. Jafari S, Hosseini Salekdeh SS, Solouk A, Yousefzadeh M (2020) Electrospun polyethylene terephthalate (PET) nanofibrous conduit for biomedical application. Polym Adv Technol 31:284–296. https://doi.org/10.1002/pat.4768

    Article  CAS  Google Scholar 

  203. Jirofti N, Mohebbi-Kalhori D, Samimi A, Hadjizadeh A, Kazemzadeh GH (2020) Fabrication and characterization of a novel compliant small-diameter PET/PU/PCL triad-hybrid vascular graft. Biomed Mater 15:055004

    Article  CAS  Google Scholar 

  204. Veleirinho B, Berti FV, Dias PF et al (2013) Manipulation of chemical composition and architecture of non-biodegradable poly(ethylene terephthalate)/chitosan fibrous scaffolds and their effects on L929 cell behavior. Mater Sci Eng C 33:37–46. https://doi.org/10.1016/j.msec.2012.07.047

    Article  CAS  Google Scholar 

  205. Lopes-da-Silva JA, Veleirinho B, Delgadillo I (2009) Preparation and characterization of electrospun mats made of PET/chitosan hybrid nanofibers. J Nanosci Nanotechnol 9:3798–3804. https://doi.org/10.1166/jnn.2009.NS70

    Article  CAS  Google Scholar 

  206. Burrows MC, Zamarion VM, Filippin-Monteiro FB et al (2012) Hybrid scaffolds built from PET and collagen as a model for vascular graft architecture. Macromol Biosci 12:1660–1670. https://doi.org/10.1002/mabi.201200154

    Article  CAS  Google Scholar 

  207. Li G, Zhao Y, Lv M et al (2013) Super hydrophilic poly(ethylene terephthalate) (PET)/poly(vinyl alcohol) (PVA) composite fibrous mats with improved mechanical properties prepared via electrospinning process. Colloids Surf A Physicochem Eng Asp 436:417–424. https://doi.org/10.1016/j.colsurfa.2013.07.014

    Article  CAS  Google Scholar 

  208. Shahrabi SS, Barzin J, Shokrollahi P (2018) Blood cell separation by novel PET/PVP blend electrospun membranes. Polym Test 66:94–104. https://doi.org/10.1016/j.polymertesting.2017.12.034

    Article  CAS  Google Scholar 

  209. Wang LN, Xin CZ, Liu WT et al (2015) Electrospun PET/PEG fibrous membrane with enhanced mechanical properties and hydrophilicity for filtration applications. Arab J Sci Eng 40:2889–2895. https://doi.org/10.1007/s13369-015-1828-1

    Article  CAS  Google Scholar 

  210. Hasan A, Deeb G, Atwi K, Soliman S (2015) Electrospun PET-PU scaffolds for vascular tissue engineering. In: 2015 International conference on advances in biomedical engineering ICABME 2015, pp 217–221. https://doi.org/10.1109/ICABME.2015.7323291

  211. Rahmati Nejad M, Yousefzadeh M, Solouk A (2020) Electrospun PET/PCL small diameter nanofibrous conduit for biomedical application. Mater Sci Eng C 110:110692. https://doi.org/10.1016/j.msec.2020.110692

    Article  CAS  Google Scholar 

  212. Jung K-H, Huh M-W, Meng W et al (2007) Preparation and antibacterial activity of PET/chitosan nanofibrous mats using an electrospinning technique. J Appl Polym Sci 105:2816–2823. https://doi.org/10.1002/app.25594

    Article  CAS  Google Scholar 

  213. Lee JY (2013) Electrically conducting polymer-based nanofibrous scaffolds for tissue engineering applications. Polym Rev 53:443–459. https://doi.org/10.1080/15583724.2013.806544

    Article  CAS  Google Scholar 

  214. Massoumi B, Aali N, Jaymand M (2015) Novel nanostructured star-shaped polyaniline derivatives and their electrospun nanofibers with gelatin. RSC Adv 5:107680–107693. https://doi.org/10.1039/c5ra23100k

    Article  CAS  Google Scholar 

  215. Moutsatsou P, Coopman K, Georgiadou S (2018) Chitosan & conductive PANI/chitosan composite nanofibers—evaluation of antibacterial properties. Curr Nanomater 4:6–20. https://doi.org/10.2174/1573413714666181114110651

    Article  CAS  Google Scholar 

  216. Moutsatsou P, Coopman K, Georgiadou S (2017) Biocompatibility assessment of conducting PANI/chitosan nanofibers for wound healing applications. Polymers (Basel). https://doi.org/10.3390/polym9120687

    Article  Google Scholar 

  217. Gizdavic-Nikolaidis M, Ray S, Bennett JR et al (2010) Electrospun functionalized polyaniline copolymer-based nanofibers with potential application in tissue engineering. Macromol Biosci 10:1424–1431. https://doi.org/10.1002/mabi.201000237

    Article  CAS  Google Scholar 

  218. Prabhakaran MP, Ghasemi-Mobarakeh L, Jin G, Ramakrishna S (2011) Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells. J Biosci Bioeng 112:501–507. https://doi.org/10.1016/j.jbiosc.2011.07.010

    Article  CAS  Google Scholar 

  219. Chen MC, Sun YC, Chen YH (2013) Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering. Acta Biomater 9:5562–5572. https://doi.org/10.1016/j.actbio.2012.10.024

    Article  CAS  Google Scholar 

  220. Zhang Y, Rutledge GC (2012) Electrical conductivity of electrospun polyaniline and polyaniline-blend fibers and mats. Fiber Society 2012 fall meeting and technical conference in partnership with polymer fibers 2012 rediscovering fibers 21st century

  221. Zamani F, Amani-Tehran M, Zaminy A, Shokrgozar MA (2017) Conductive 3D structure nanofibrous scaffolds for spinal cord regeneration. Fibers Polym 18:1874–1881. https://doi.org/10.1007/s12221-017-7349-7

    Article  CAS  Google Scholar 

  222. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M et al (2009) Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering. Tissue Eng Part A 15:3605–3619. https://doi.org/10.1089/ten.tea.2008.0689

    Article  CAS  Google Scholar 

  223. Zarei M, Samimi A, Khorram M et al (2021) Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application. Int J Biol Macromol 168:175–186. https://doi.org/10.1016/j.ijbiomac.2020.12.031

    Article  CAS  Google Scholar 

  224. Kai D, Prabhakaran MP, Jin G, Ramakrishna S (2011) Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering. J Biomed Mater Res Part A 99 A:376–385. https://doi.org/10.1002/jbm.a.33200

    Article  CAS  Google Scholar 

  225. Massoumi B, Hatamzadeh M, Firouzi N, Jaymand M (2019) Electrically conductive nanofibrous scaffold composed of poly(ethylene glycol)-modified polypyrrole and poly(ε-caprolactone) for tissue engineering applications. Mater Sci Eng C 98:300–310. https://doi.org/10.1016/j.msec.2018.12.114

    Article  CAS  Google Scholar 

  226. Gordegir M, Oz S, Yezer I et al (2019) Cells-on-nanofibers: effect of polyethyleneimine on hydrophobicity of poly-ε-caprolacton electrospun nanofibers and immobilization of bacteria. Enzyme Microb Technol 126:24–31. https://doi.org/10.1016/j.enzmictec.2019.03.002

    Article  CAS  Google Scholar 

  227. Lakra R, Kiran MS, Korrapati PS (2019) Electrospun gelatin–polyethylenimine blend nanofibrous scaffold for biomedical applications. J Mater Sci Mater Med. https://doi.org/10.1007/s10856-019-6336-5

    Article  Google Scholar 

  228. An S (2017) Influence of the addition of microencapsulated phytoncide to a denture base resin on mechanical. Master of Philosophy School of Dental Science, Faculty of Medicine, The University of Melbourne

  229. Karatepe UY, Ozdemir T (2020) Improving mechanical and antibacterial properties of PMMA via polyblend electrospinning with silk fibroin and polyethyleneimine towards dental applications. Bioact Mater 5:510–515. https://doi.org/10.1016/j.bioactmat.2020.04.005

    Article  Google Scholar 

  230. Munj HR, Tyler Nelson M, Karandikar PS et al (2014) Biocompatible electrospun polymer blends for biomedical applications. J Biomed Mater Res Part B Appl Biomater 102:1517–1527. https://doi.org/10.1002/jbm.b.33132

    Article  CAS  Google Scholar 

  231. Carrasco-Torres G, Valdés-Madrigal MA, Vásquez-Garzón VR et al (2019) Effect of Silk Fibroin on cell viability in electrospun scaffolds of polyethylene oxide. Polymers (Basel). https://doi.org/10.3390/polym11030451

    Article  Google Scholar 

  232. Thirugnanaselvam M, Gobi N, Arun Karthick S (2013) SPI/PEO blended electrospun martrix for wound healing. Fibers Polym 14:965–969. https://doi.org/10.1007/s12221-013-0965-y

    Article  CAS  Google Scholar 

  233. Park SA, Park KE, Kim WD (2010) Preparation of sodium alginate/poly(ethylene oxide) blend nanofibers with lecithin. Macromol Res 18:891–896. https://doi.org/10.1007/s13233-010-0909-y

    Article  CAS  Google Scholar 

  234. Saquing CD, Tang C, Monian B et al (2013) Alginate-polyethylene oxide blend nanofibers and the role of the carrier polymer in electrospinning. Ind Eng Chem Res 52:8692–8704. https://doi.org/10.1021/ie302385b

    Article  CAS  Google Scholar 

  235. Aijaz MO, Karim MR, Alharbi HF, Alharthi NH (2019) Novel optimised highly aligned electrospun PEI-PAN nanofibre mats with excellent wettability. Polymer (Guildf) 180:121665. https://doi.org/10.1016/j.polymer.2019.121665

    Article  CAS  Google Scholar 

  236. Kim HS, Lee KB, Lee YJ et al (2012) Preparation of high molecular weight poly(vinyl carbazole)/polystyrene blend web by electrospinning. Polym Polym Compos 20:609–620. https://doi.org/10.1177/096739111202000705

    Article  CAS  Google Scholar 

  237. Tan HL, Kai D, Pasbakhsh P et al (2020) Electrospun cellulose acetate butyrate/polyethylene glycol (CAB/PEG) composite nanofibers: a potential scaffold for tissue engineering. Colloids Surfaces B Biointerfaces 188:110713. https://doi.org/10.1016/j.colsurfb.2019.110713

    Article  CAS  Google Scholar 

  238. Shrestha BK, Mousa HM, Tiwari AP et al (2016) Development of polyamide-6,6/chitosan electrospun hybrid nanofibrous scaffolds for tissue engineering application. Carbohydr Polym 148:107–114. https://doi.org/10.1016/j.carbpol.2016.03.094

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Karbasi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadalizadeh, Z., Bahremandi-Toloue, E. & Karbasi, S. Synthetic-based blended electrospun scaffolds in tissue engineering applications. J Mater Sci 57, 4020–4079 (2022). https://doi.org/10.1007/s10853-021-06826-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06826-w

Navigation