Skip to main content
Log in

TecoflexTM functionalization by curdlan and its effect on protein adsorption and bacterial and tissue cell adhesion

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Curdlan modified polyurethane was created by physically entrapping the former on TecoflexTM surface. ATR-FT-IR, SEM-EDAX and AFM analysis revealed the formation of stable thin curdlan layer on the film. Contact-angle measurements showed that the modified film was highly hydrophilic. Confocal laser scanning microscopy showed the existence of entrapped layer of approximately 20–25 μm in depth. Surface entrapment of curdlan minimized both protein adsorption and mouse L929 fibroblast cell adhesion relative to the control. Surface induced cellular inflammatory response was determined from the expression levels of proinflammatory cytokine TNF-α, by measuring their mRNA profiles in the cells using real time polymerase chain reaction (RT-PCR) normalized to the housekeeping gene GAPDH. The inflammatory response was suppressed on the modified substrate as expression of TNF-α mRNA was found to be up regulated on TecoflexTM, while it was significantly lower on curdlan substrate. The adhesion of S. aureus decreased by 62% on curdlan modified surface. Using such simple surface entrapment process, it will be possible to develop well-defined surface modifications that promote specific cell interactions and perhaps better performance in the long-term as implant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N.B. Holland, Y. Qiu, M. Ruegsegger, R.E. Marchant, Biomimetic engineering of non-adhesive glycocalyx-like surfaces using oligosaccharide surfactant polymers. Nature 392, 799–801 (1998). doi:10.1038/33894

    Article  PubMed  CAS  Google Scholar 

  2. W.H. Evans, J.M. Graham, Membrane Structure and Function (Oxford University Press, New York, 1991), pp. 1–86

    Google Scholar 

  3. M. Fukuda, Cell surface carbohydrates, in Molecular Glycobiology, ed. by M. Fukuda, O. Hindsgaul (Oxford University Press, New York, 1994), pp. 1–52

    Google Scholar 

  4. P. Bongrand (ed.), Physical Basis of Cell–Cell Adhesion (CRC Press, Boca Raton, 1988), pp. 1–37

  5. M.N. Helmus, J.A. Hubbell, Material’s selection. Cardiovasc. Pathol. 2(suppl.), 53S–71S (1993). doi:10.1016/1054-8807(93)90047-6

    Article  Google Scholar 

  6. E. Osterberg, K. Bergstrom, K. Holmberg, J.A. Riggs, J.M. Vanalstine, T.P. Schuman et al., Comparison of polysaccharide and poly (ethylene glycol) coatings for reduction of protein adsorption on polystyrene surfaces. Colloids Surf. A Physicochem. Eng. Aspects 77, 159–169 (1993)

    Article  Google Scholar 

  7. E. Osterberg, K. Bergstrom, K. Holmberg, T.P. Schuman, J.A. Riggs, N.L. Burns et al., Protein-rejecting ability of surface-bound dextran in end-on and side-on configurations: comparison to PEG. J. Biomed. Mater. Res. 29, 741–747 (1995). doi:10.1002/jbm.820290610

    Article  PubMed  CAS  Google Scholar 

  8. N. Ma, M. Tabrizian, A. Petit, O.L. Huk, L.H. Yahia, Cytotoxic reaction and TNF-α response of macrophages to polyurethane particles. J. Biomater. Sci. Polym. Ed. 13, 257–272 (2002). doi:10.1163/156856202320176510

    Google Scholar 

  9. S. Gogolewski, Biomedical polyurethanes, in Desk Reference of Functional Polymers, Synthesis and Application, ed. by R. Arshady (American Chemical Society, Washington, DC, 1996), p. 678

    Google Scholar 

  10. N.R. James, J. Philip, A. Jayakrishnan, Polyurethanes with radiopaque properties. Biomaterials 27, 160–166 (2006). doi:10.1016/j.biomaterials.2005.05.099

    Article  PubMed  CAS  Google Scholar 

  11. D.W. Renn, Purified curdlan and its hydroxyalkyl derivatives: preparation, properties and applications. Carbohydr. Polym. 33, 219–225 (1997). doi:10.1016/S0144-8617(97)00058-1

    Article  CAS  Google Scholar 

  12. B.S. Kim, I.D. Jung, J.S. Kim, J.H. Lee, I.Y. Lee, K. Bok, Curdlan gels as protein drug delivery vehicles. Biotechnol. Lett. 22, 1127–1130 (2000). doi:10.1023/A:1005636205036

    Article  CAS  Google Scholar 

  13. T. Yoshida, Y. Tasuda, T. Uryu, H. Nakashima, N. Yamamoto, T. Mimura, Y. Kaneko, Synthesis and in vitro inhibitory effect of -glucosyl-branched curdlan sulfates on AIDS virus infection. Macromolecules 27, 6272–6276 (1994). doi:10.1021/ma00100a007

    Article  CAS  Google Scholar 

  14. K. Katsuraya, T. Shoji, K. Inazawa, H. Nakashima, N. Yamamoto, T. Uryu, Synthesis of sulfated alkyl Laminara-oligosaccharides having potent anti-HIV activity and relationship between structure and biological activity. Macromolecules 27, 6695–6699 (1994). doi:10.1021/ma00101a001

    Article  CAS  Google Scholar 

  15. A. Greinacher, S. Alban, V. Dummel, G. Franz, C. Mueller-Eckhardt, Characterization of the structural requirements for a carbohydrate based anticoagulant with a reduced risk of inducing the immunological type of heparin-associated thrombocytopenia. Thromb. Haemost. 74, 886–892 (1995)

    PubMed  CAS  Google Scholar 

  16. M.S. Lord, C. Modin, M. Foss, M. Duch, A. Simmons, Monitoring cell adhesion on tantalum and oxidised polystyrene using a quartz crystal microbalance with dissipation. Biomaterials 27, 4529–4537 (2006). doi:10.1016/j.biomaterials.2006.04.006

    Article  PubMed  CAS  Google Scholar 

  17. D.M. Brunette, A. Khakbaznejad, M. Takekawa, M. Shimonishi, H. Murakami, M. Wieland et al., Improving the bio-implant interface by controlling cell behaviour using surface topography, in Bioimplant Interface. Improving Biomaterials and Tissue Reactions, ed. by J.E. Ellingsen, S.P. Lyngstadaas (CRC Press, Boca Raton, FL, 2003)

    Google Scholar 

  18. N.P. Desai, J.A. Hubbell, Surface physical interpenetrating networks of poly (ethylene terephthalate) and poly(ethylene oxide) with biomedical applications. Macromolecules 25, 226–232 (1992). doi:10.1021/ma00027a038

    Article  CAS  Google Scholar 

  19. N.P. Desai, J.A. Hubbell, Solution technique to incorporate polyethylene oxide and other water soluble polymers into surfaces of polymeric biomaterials. Biomaterials 12, 144–153 (1991). doi:10.1016/0142-9612(91)90193-E

    Article  PubMed  CAS  Google Scholar 

  20. R.A. Quirk, M.C. Davies, S.J.B. Tendler, K.M. Shakesheff, Surface engineering of poly (lactic acid) by entrapment of modifying species. Macromolecules 33, 258–260 (2000). doi:10.1021/ma9916133

    Article  CAS  Google Scholar 

  21. I.G. Russ, Energy dispersive X-ray analysis, the scanning electron microscope in energy dispersive X-ray analysis, STP 485. (American Society for Testing and Materials, Philadelphia, 1971), p. 154

  22. T. Egyhazi, J. Scholtz, V.S. Beskov, SEM-EDAX investigations of use-related microstructural changes in an ammonia synthesis catalyst. React. Kinet. Catal. Lett. 24, 1–8 (1984). doi:10.1007/BF02069592

    Article  CAS  Google Scholar 

  23. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983). doi:10.1016/0022-1759(83)90303-4

    Article  PubMed  CAS  Google Scholar 

  24. R. Zange, Y. Li, T. Kissel, Biocompatibility testing of ABA copolymers consisting of poly (l-lactic-co-glycolic acid) A blocks attached to a central poly (ethylene oxide) B block under in vitro conditions using different L929 mouse fibroblast cell culture models. J. Control Release 56, 249–258 (1998). doi:10.1016/S0168-3659(98)00093-5

    Article  PubMed  CAS  Google Scholar 

  25. D.L. Garner, D. Pinkel, L.A. Johnson, M.M. Pace, Assessment of spermatozoal function using dual fluorescent staining and flow cytometric analyses. Biol. Reprod. 34, 127–138 (1986). doi:10.1095/biolreprod34.1.127

    Article  PubMed  CAS  Google Scholar 

  26. D.L. Garner, L.A. Johnson, C.H. Allen, Fluorometric evaluation of cryopreserved bovine spermatozoa extended in egg yolk and milk. Theriogenology 30, 369–378 (1988). doi:10.1016/0093-691X(88)90184-7

    Article  PubMed  CAS  Google Scholar 

  27. P.F. Watson, E. Kunze, P. Cramer, R.H. Hammerstedt, A comparison of critical osmolarity and hydraulic conductivity and its activation energy in fowl and bull spermatozoa. J. Androl. 13, 131–138 (1992)

    PubMed  CAS  Google Scholar 

  28. D.L. Garner, L.A. Johnson, Viability assessment of mammalian sperm using SYBR-14 and propidium iodide. Biol. Reprod. 53, 276–284 (1995). doi:10.1095/biolreprod53.2.276

    Article  PubMed  CAS  Google Scholar 

  29. S.B. Goodman, Does the immune system play a role in loosening and osteolysis of total joint replacements? J. Long Term Eff. Med. Implants 6(2), 91–101 (1996)

    PubMed  CAS  Google Scholar 

  30. T. Suzuki, P.J. Higgins, D.R. Crawford, Control selection for RNA quantitation. Biotechniques 29(2), 332–337 (2000)

    PubMed  CAS  Google Scholar 

  31. S.A. Bustin, Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25(2), 169–193 (2000). doi:10.1677/jme.0.0250169

    Article  PubMed  CAS  Google Scholar 

  32. T.H. Harris, N.M. Cooney, J.M. Mansfield, D.M. Paulnock, Signal transduction, gene transcription, and cytokine production triggered in macrophages by exposure to trypanosome DNA. Infect. Immun. 74, 4530–4537 (2006). doi:10.1128/IAI.01938-05

    Article  PubMed  CAS  Google Scholar 

  33. Y. Jin, H. Zhang, Y. Yin, K. Nishinari, Comparison of curdlan and its carboxymethylated derivative by means of Rheology, DSC, and AFM. Carbohydr. Res. 341, 90–99 (2006). doi:10.1016/j.carres.2005.11.003

    Article  PubMed  CAS  Google Scholar 

  34. J.L. Brash, T.A. Horbett, Proteins at interfaces: an overview, in Proteins at Interfaces. II. Fundamentals and Applications, ACS Symposium Series, vol. 602, ed. by T.A. Horbett, J.L. Brash (American Chemical Society, Washington, DC, 1995), pp. 1–23

  35. B.D. Ratner, Characterization of biomaterial surfaces. Cardiovasc. Pathol. 2, 87S–100S (1993). doi:10.1016/1054-8807(93)90049-8

    Article  CAS  Google Scholar 

  36. J.M. Courtney, N.M.K. Lamba, S. Sundaram, C.D. Forbes, Biomaterials for blood-contacting applications. Biomaterials 15, 737–744 (1994). doi:10.1016/0142-9612(94)90026-4

    Article  PubMed  CAS  Google Scholar 

  37. J.A. Hubbell, Chemical modification of polymer surfaces to improve biocompatibility. Trends Polym. Sci. (Regul. Ed.) 2, 20–25 (1994)

    CAS  Google Scholar 

  38. B. Montdargent, D. Letourneur, Toward new biomaterials. Infect. Control Hosp. Epidemiol. 27, 404–410 (2000)

    Google Scholar 

  39. S. Galliani, A. Cremieux, A. VanDerAuwera, M. Viot, Influence of strain, biomaterial, proteins and oncostatic chemotherapy on staphylococcus–epidermidis adhesion to intravascular catheters in vitro. J. Lab. Clin. Med. 127(1), 71–80 (1996)

    Google Scholar 

  40. H. Brydon, G. Keir, E. Thompson, R. Bayston, R. Hayward, W. Harkness, Protein adsorption to hydrocephalus shunt catheters: CSF protein adsorption. J. Neurol. Neurosurg. Psychiatry 64, 643 (1998)

    Article  PubMed  CAS  Google Scholar 

  41. M. Herrmann, P.E. Vaudaux, D. Pittet, R. Auckenthaler, P.D. Lew, F. Schumacherperdreau, G. Peters, F.A. Waldvogel, Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J. Infect. Dis. 158, 693 (1988)

    PubMed  CAS  Google Scholar 

  42. F. Grinnell, M.K. Feld, Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody binding and analyzed during cell adhesion in serum-containing medium. J. Biol. Chem. 257, 4888–4893 (1982)

    PubMed  CAS  Google Scholar 

  43. T.A. Horbett, M.B. Schway, Correlations between mouse 3T3 cell spreading and serum fibronectin adsorption on glass and hydroxyethylmethacrylate-ethylmethacrylate copolymers. J. Biomed. Mater. Res. 22, 763–793 (1988). doi:10.1002/jbm.820220903

    Article  PubMed  CAS  Google Scholar 

  44. J.G. Steele, G. Johnson, P.A. Underwood, Role of serum vitronectin and fibronectin in adhesion of fibroblasts following seeding onto tissue culture polystyrene. J. Biomed. Mater. Res. 992(26), 861–864 (2004)

    Google Scholar 

  45. Y.H. An, R.J. Friedman, Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J. Biomed. Mater. Res. 43, 338–348 (1998). doi:10.1002/(SICI)1097-4636(199823)43:3<338::AID-JBM16>3.0.CO;2-B

    Article  PubMed  CAS  Google Scholar 

  46. V.A. Tegoulia, S.L. Cooper, Staphylococcus aureus adhesion to self-assembled monolayers: effect of surface chemistry and fibrinogen presence. Colloids Surf. B. Biointerfaces 24, 217 (2002). doi:10.1016/S0927-7765(01)00240-5

    Article  CAS  Google Scholar 

  47. D. Pavithra, M. Doble, Biofilm formation, bacterial adhesion and host response on polymeric implants issues and prevention. Biomed. Mater. 3, 03 4003–03 4017 (2008)

    Article  CAS  Google Scholar 

  48. H.L. Brydon, R. Bayston, R. Hayward, W. Harkness, Reduced bacterial adhesion to hydrocephalus shunt catheters mediated by cerebrospinal fluid proteins. J. Neurol. Neurosurg. Psychiatry 60, 671–675 (1996). doi:10.1136/jnnp.60.6.671

    Article  PubMed  CAS  Google Scholar 

  49. Y.H. An, R.J. Friedman, R.A. Draughn, E.A. Smith, J.H. Nicholson, J.F. John, Rapid quantification of staphylococci adhered to titanium surfaces using image analyzed epifluorescence microscopy. J. Microbiol. Methods 24, 29–40 (1995). doi:10.1016/0167-7012(95)00051-8

    Article  Google Scholar 

  50. T.J. Kinnari, L.I. Peltonen, T. Kuusela, J. Kivilahti, M. Kononen, J. Jero, Staphylococci and implant surfaces: a review. Otol. Neurotol. 26, 380 (2005). doi:10.1097/01.mao.0000169767.85549.87

    Article  PubMed  Google Scholar 

  51. H. Tang, A. Wang, X. Liang, T. Cao, S.O. Salley, J.P. McAllister, Adhesion and colonization on silicone. Colloids Surf. B Biointerfaces 51, 16–24 (2006). doi:10.1016/j.colsurfb.2006.04.011

    Article  PubMed  CAS  Google Scholar 

  52. R. Kunz, C. Anders, L. Heinrich, Investigation into the mechanism of bacterial adhesion to hydrogel-coated surfaces. J. Mater. Sci. Mater. Med. 10, 649–652 (1999). doi:10.1023/A:1008943909728

    Article  PubMed  CAS  Google Scholar 

  53. T.D. Brock (ed.), Biology of Microorganisms (Prentice-Hall, London, 1997)

    Google Scholar 

  54. M.M. Tunney, S.P. Gorman, Evaluation of a poly(vinyl pyrollidone)-coated biomaterial for urological use. Biomaterials 23, 4601 (2002). doi:10.1016/S0142-9612(02)00206-5

    Article  PubMed  CAS  Google Scholar 

  55. B.D. Ratner, F.J. Hoffmann, J.E. Schoen, F. Lemons, Biomaterials Science: An Introduction to Materials and Medicine (Academic Press, New York, 1996)

    Google Scholar 

  56. R.G. Chapman, E. Ostuni, M.N. Liang, G. Meluleni, E. Kim, L. Yan et al., Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria. Langmuir 17(4), 1225–1233 (2001). doi:10.1021/la001222d

    Article  CAS  Google Scholar 

  57. S.P. Massia, J. Stark, D.S. Letbetter, Surface-immobilized dextran limits cell adhesion and spreading. Biomaterials 21, 2253–2261 (2000). doi:10.1016/S0142-9612(00)00151-4

    Article  PubMed  CAS  Google Scholar 

  58. R.E. Marchant, S. Yuan, G. Szakalas-Gratzl, Interactions of plasma proteins with a novel polysaccharide surfactant physisorbed to polyethylene. J. Biomater. Sci. Polym. Ed. 6, 549–664 (1994). doi:10.1163/156856294X00509

    Article  PubMed  CAS  Google Scholar 

  59. M. Arakawa, M. Takaoki, H. Kawaji, Immunogenicity of polysaccharide 13140 in rats and mice. Unpublished report from Central Research Laboratories, Takeda Chemical Industries Ltd. Submitted to WHO by Takeda Chemical Industries Ltd. (1974)

Download references

Acknowledgements

This work was partially funded by DBT. A.K and D.P would like to thank CSIR for providing JRF to pursue their doctoral studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Doble.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khandwekar, A.P., Patil, D.P., Khandwekar, V. et al. TecoflexTM functionalization by curdlan and its effect on protein adsorption and bacterial and tissue cell adhesion. J Mater Sci: Mater Med 20, 1115–1129 (2009). https://doi.org/10.1007/s10856-008-3655-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3655-3

Keywords

Navigation