Skip to main content

Advertisement

Log in

A polylactide/fibrin gel composite scaffold for cartilage tissue engineering: fabrication and an in vitro evaluation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A composite scaffold for cartilage tissue engineering was fabricated by filling a porous poly (l-lactide) (PLLA) scaffold with fibrin gel. The porous PLLA scaffold prepared by a method of thermally induced phase separation has an average pore diameter of 200 μm and a porosity of 93%. Incorporation of fibrin gel into the scaffold was achieved by dropping a fibrinogen and thrombin mixture solution onto the scaffold. For a couple of minutes the fibrin gel was in situ formed within the scaffold. The filling efficiency was decreased along with the increase of the fibrinogen concentration. After fibrin gel filling, the compressive modulus and the yield stress increased from 5.94 MPa and 0.37 MPa (control PLLA scaffold in a hydrated state) to 7.21 MPa and 0.53 MPa, respectively. While the fibrin gel lost its weight in phosphate buffered saline up to ~50% within 3 days, 85% and 70% of the fibrin gel weight in the composite scaffold was remained within 3 and 35 days, respectively. A consistent significant higher level of rabbit auricular chondrocyte viability, cell number and glycosaminoglycan was measured in the composite scaffold than that in the control PLLA scaffold. Rabbit auricular chondrocytes with round morphology were also observed in the composite scaffold by confocal microscopy and scanning electron microscopy. Altogether with the features of better strength and cytocompatibility, this type of composite scaffold may have better performance as a matrix for cartilage tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Langer, J.P. Vacanti, Science 260, 920 (1993). doi:10.1126/science.8493529

    Article  PubMed  CAS  ADS  Google Scholar 

  2. D.W. Hutmacher, Biomaterials 21, 2529 (2000). doi:10.1016/S0142-9612(00)00121-6

    Article  PubMed  CAS  Google Scholar 

  3. Z.W. Ma, C.Y. Gao, Y.H. Gong, J.C. Shen, J. Biomed. Mater. Res. B 67B, 610 (2003). doi:10.1002/jbm.b.10049

    Article  CAS  Google Scholar 

  4. Z.W. Ma, C.Y. Gao, Y.H. Gong, J.C. Shen, Biomaterials 26, 1253 (2005). doi:10.1016/j.biomaterials.2004.04.031

    Article  PubMed  CAS  Google Scholar 

  5. E. Schnell, K. Klinkhamme, S. Balze, G. Brook, D. Klee, P. Dalton et al., Biomaterials 28, 3012 (2007). doi:10.1016/j.biomaterials.2007.03.009

    Article  PubMed  CAS  Google Scholar 

  6. P.X. Ma, J.W. Choi, Tissue Eng. 7, 23 (2001). doi:10.1089/107632701300003269

    Article  PubMed  CAS  Google Scholar 

  7. Y.H. Gong, Z.W. Ma, C.Y. Gao, W. Wang, J.C. Shen, J. Appl. Polym. Sci. 101, 3336 (2006). doi:10.1002/app.23931

    Article  CAS  Google Scholar 

  8. Y.S. Nam, T.G. Park, J. Biomed. Mater. Res. 47, 8 (1999). doi:10.1002/(SICI)1097-4636(199910)47:1<8::AID-JBM2>3.0.CO;2-L

    Article  PubMed  CAS  Google Scholar 

  9. A.G. Mikos, Y. Bao, L. Cima, D.E. Ingber, J.P. Vacanti, R. Langer, J. Biomed. Mater. Res. 27, 183 (1993). doi:10.1002/jbm.820270207

    Article  PubMed  CAS  Google Scholar 

  10. A. Park, B. Wu, L.G. Griffith, J. Biomater. Sci. Polym. Ed. 9, 89 (1998). doi:10.1163/156856298X00451

    Article  PubMed  CAS  Google Scholar 

  11. Y. Deng, K. Zhao, X.F. Zhang, P. Hu, G.Q. Chen, Biomaterials 23, 404940 (2002). doi:10.1016/S0142-9612(02)00136-9

    Article  Google Scholar 

  12. W.J. Li, R. Tuli, R.S. Tuan, Biomaterials 26, 599 (2005). doi:10.1016/j.biomaterials.2004.03.005

    Article  PubMed  CAS  Google Scholar 

  13. J.A. Buckwalter, H.J. Mankin, AAOS. Instr. Course Lect. 47, 477 (1998)

    PubMed  CAS  Google Scholar 

  14. N.P. Cohen, R.J. Foster, V.C. Mow, J. Orthop. Sports Phys. Ther. 28, 203 (1998)

    PubMed  CAS  Google Scholar 

  15. J.S. Temenoff, A.G. Mikos, Biomaterials 21, 431 (2000). doi:10.1016/S0142-9612(99)00213-6

    Article  PubMed  CAS  Google Scholar 

  16. C.W. Archer, P. Francis-West, Int. J. Biochem. Cell Biol. 35, 401 (2003). doi:10.1016/S1357-2725(02)00301-1

    Article  PubMed  CAS  Google Scholar 

  17. B.P. Chan, T.Y. Hui, C.W. Yeung, J. Li, I. Mo, G.C.F. Chan, Biomaterials 28, 4652 (2007). doi:10.1016/j.biomaterials.2007.07.041

    Article  PubMed  CAS  Google Scholar 

  18. K. Bailey, F.R. Bettelheim, L. Lorand, W.R. Middlebrook, Nature 167, 233 (1951). doi:10.1038/167233a0

    Article  PubMed  CAS  ADS  Google Scholar 

  19. F.H. Silver, M.C. Wang, G.D. Pins, Biomaterials 16, 891 (1995). doi:10.1016/0142-9612(95)93113-R

    Article  PubMed  CAS  Google Scholar 

  20. P. Schneider, T. Foitzik, U. Pohlen, W. Golder, H.J. Buhr, J. Surg. Res. 107, 186 (2002). doi:10.1006/jsre.2002.6511

    Article  Google Scholar 

  21. L. Muszbek, V.C. Yee, Z. Hevessy, Thromb. Res. 94, 271 (1999). doi:10.1016/S0049-3848(99)00023-7

    Article  PubMed  CAS  Google Scholar 

  22. J.C. Schense, J.A. Hubbell, Bioconjug. Chem. 10, 75 (1999). doi:10.1021/bc9800769

    Article  PubMed  CAS  Google Scholar 

  23. E.D. Grassl, T.R. Oegema, R.T. Tranquillo, J. Biomed. Mater. Res. 60, 607 (2002). doi:10.1002/jbm.10107

    Article  PubMed  CAS  Google Scholar 

  24. M.R. Neidert, E.S. Lee, T.R. Oegema, R.T. Tranquillo, Biomaterials 23, 3717 (2002). doi:10.1016/S0142-9612(02)00106-0

    Article  PubMed  CAS  Google Scholar 

  25. J.L. Long, R.T. Tranquillo, Matrix Biol. 22, 339 (2003). doi:10.1016/S0945-053X(03)00052-0

    Article  PubMed  CAS  Google Scholar 

  26. D.A. Gabriel, K. Muga, E.M. Boothroyd, J. Biol. Chem. 267, 24259 (1992)

    PubMed  CAS  Google Scholar 

  27. J.P. Collet, J. Soria, M. Mirshahi, M. Hirsch, F.B. Dagonnet, J. Caen et al., Blood 82, 2462 (1993)

    PubMed  CAS  Google Scholar 

  28. S. Cox, M. Cole, B. Tawil, Tissue Eng. 10, 942 (2000). doi:10.1089/1076327041348392

    Article  Google Scholar 

  29. P.S. Ciano, R.B. Colvin, A.M. Dvorak, J. McDonagh, H.F. Dvorak, Lab. Invest. 54, 62 (1986)

    PubMed  CAS  Google Scholar 

  30. D. Eyrich, F. Brandl, B. Appel, H. Wiese, G. Maier, M. Wenzel et al., Biomaterials 28, 55 (2007). doi:10.1016/j.biomaterials.2006.08.027

    Article  PubMed  CAS  Google Scholar 

  31. A. Hokugo, T. Takamoto, Y. Tabata, Biomaterials 27, 61 (2006). doi:10.1016/j.biomaterials.2005.05.030

    Article  PubMed  CAS  Google Scholar 

  32. Y.H. Gong, L.J. He, Z.W. Ma, Q.L. Zhou, Z.W. Ma, C.Y. Gao et al., J. Biomed. Mater. Res. Part B 82B, 192 (2007)

    Article  CAS  Google Scholar 

  33. A. Schindler, D. Harper, J. Polym. Sci. A-Polym. Chem (Kyoto) 17, 2593 (1979)

    CAS  Google Scholar 

  34. A. Dresdale, E.A. Rose, V. Jeevanandam, K. Reemtsma, F.O. Bowman, J.R. Malm, Surgery 97, 750 (1985)

    PubMed  CAS  Google Scholar 

  35. H.G. Zhao, L. Ma, J. Zhou, Z.W. Mao, C.Y. Gao, J.C. Shen, Biomed Mater. 3, 015001 (2008). doi:10.1088/1748-6041/3/1/015001

    Article  ADS  Google Scholar 

  36. Ma ZW, Gao CY, Gong YH, Ji J, Shen JC, J. Biomed. Mater. Res. Part B: Appl. Biomater. 63, 838 (2002). doi:10.1002/jbm.10470

    Article  Google Scholar 

  37. Y.J. Kim, R.L. Sah, J.Y.H. Doong, A.J. Grodzinsky, Anal. Biochem. 174, 168 (1988). doi:10.1016/0003-2697(88)90532-5

    Article  PubMed  CAS  Google Scholar 

  38. R.L.Y. Sah, Y.J. Kim, J.Y.H. Doong, A.J. Grodzinsky, A.H.K. Plaas, J.D. Sandy, J. Orthop. Res. 7, 619 (1989). doi:10.1002/jor.1100070502

    Article  PubMed  CAS  Google Scholar 

  39. C.D. Sims, P.E. Butler, Y.L. Cao, R. Casanova, M.A. Randolph, A. Black et al., Plast. Reconstr. Surg. 101(6), 1580 (1998). doi:10.1097/00006534-199805000-00022

    Article  PubMed  CAS  Google Scholar 

  40. W.J.C.M. Marijnissen, G.J.V.M. Van Osch, J. Aigner, S.W. Van der Veen, A.P. Hollander, H.L. Verwoerd-Verhoef et al., Biomaterials 23, 1511 (2002). doi:10.1016/S0142-9612(01)00281-2

    Article  PubMed  CAS  Google Scholar 

  41. T. Sato, G.P. Chen, T. Ushida, Mater. Sci. Eng. C 17, 83 (2001). doi:10.1016/S0928-4931(01)00313-7

    Article  CAS  Google Scholar 

  42. M.S. Rahman, T. Tsuchiya, Tissue Eng. 7, 78 (2001). doi:10.1089/107632701753337726

    Article  Google Scholar 

  43. J.W. Weisel, Adv. Protein Chem. 70, 247 (2005). doi:10.1016/S0065-3233(05)70008-5

    Article  PubMed  CAS  Google Scholar 

  44. E. Malicev, D. Radosavljevic, N.K. Velikonja, Biotechnol. Bioeng. 96, 364 (2007). doi:10.1002/bit.21038

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study is financially supported by the National High Technology Research and Development Program of China (2006AA03Z442), the Major State Basic Research Program of China (No. 2005CB623902), the Science and Technology Program of Zhejiang Province (2006C13022), and the National Science Fund for Distinguished Young Scholars of China (No. 50425311).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lie Ma or Changyou Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Ma, L., Gong, Y. et al. A polylactide/fibrin gel composite scaffold for cartilage tissue engineering: fabrication and an in vitro evaluation. J Mater Sci: Mater Med 20, 135–143 (2009). https://doi.org/10.1007/s10856-008-3543-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3543-x

Keywords

Navigation