Skip to main content
Log in

3D-Cultivation of bone marrow stromal cells on hydroxyapatite scaffolds fabricated by dispense-plotting and negative mould technique

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The main principle of a bone tissue engineering (BTE) strategy is to cultivate osteogenic cells in an osteoconductive porous scaffold. Ceramic implants for osteogenesis are based mainly on hydroxyapatite (HA), since this is the inorganic component of bone. Rapid Prototyping (RP) is a new technology in research for producing ceramic scaffolds. This technology is particularly suitable for the fabrication of individually and specially tailored single implants. For tissue engineering these scaffolds are seeded with osteoblast or osteoblast precursor cells. To supply the cultured osteoblastic cells efficiently with nutrition in these 3D-geometries a bioreactor system can be used. The aim of this study was to analyse the influence of differently fabricated HA-scaffolds on bone marrow stromal cells. For this, two RP-techniques, dispense-plotting and a negative mould method, were used to produce porous ceramics. The manufactured HA-scaffolds were then cultivated in a dynamic system (bioreactor) with an osteoblastic precursor cell line. In our study, the applied RP-techniques give the opportunity to design and process HA-scaffolds with defined porosity, interconnectivity and 3D pore distribution. A higher differentiation of bone marrow stromal cells could be detected on the negative mould fabricated scaffolds, while cell proliferation was higher on the dispense-plotted scaffolds. Nevertheless, both scaffold types can be used in tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. U. KNESER, D. SCHAEFER, J. POLYKANDRIOTIS and E. HORCH, J. Cell. Mol. Med. 10 (2006) 7

    Article  CAS  Google Scholar 

  2. D. LOGEART-AVRAMOGLOU, F. ANAGNOSTOU, R. BIZIOS and H. PETITE, J. Cell. Mol. Med. 9 (2005) 72

    Article  CAS  Google Scholar 

  3. R. LANGER and J. P. VACANTI, Science 260 (1993) 920

    Article  CAS  Google Scholar 

  4. D. W. HUTMACHER, M. SITTINGER and M. V. RISBUD, Trends Biotechnol. 22 (2004) 354

    Article  CAS  Google Scholar 

  5. W. Y. YEONG, C. K. CHUA, K. F. LEONG and M. CHANDRASEKARAN, Trends Biotechnol. 22 (2004) 643

    Article  CAS  Google Scholar 

  6. B. LEUKERS, H. GÜLKAN, S. IRSEN, S. MILZ, C. TILLE, M. SCHIEKER and H. SEITZ, J. Mat. Sci.: Mat. Med. 16 (2005) 1121

    Article  CAS  Google Scholar 

  7. A. KHALYFA, S. VOGT, J. WEISSER, G. GRIMM, A. RECHTENBACH, W. MEYER and M. SCHNABELRAUCH, J. Mater. Sci.: Mater. Med. 18 (2007) 909

    Article  CAS  Google Scholar 

  8. J. CESARANO, J. G. DELLINGER, M. P. SAAVEDRA, D. D. GILL, R. D. JAMISON, B. A. GROSSER, J. M. SINN-HANLON and M. S. GOLDWASSER, Int. J. Appl. Ceram. Technol. 2 (2005) 212

    Article  CAS  Google Scholar 

  9. E. SAIZ, L. GREMILLARD, G. MENENDEZ, P. MIRANDA, K. GRYN and A. P. TOMSIA, Mater. Sci. Eng. C27 (2007) 546

    Google Scholar 

  10. A. WOESZ, M. RUMPLER, J. STAMPFL, F. VARGA, N. FRATZL-ZELMAN, P. ROSCHGER, K. KLAUSHOFER and P. FRATZL, Mater. Sci Eng. C25 (2005) 181

    CAS  Google Scholar 

  11. K. PHAM-GIA, M. SCHWARZ, M. SCHAEFER and B. WESSLER, Rapid prototyping process to fabricate ceramic surgical implant with ceramic powder and binding agent suspension devoid of solvent, DE102005058116

  12. D. W. HUTMACHER, I. ZEIN and S. H. TEOH, Processing of bioresorbable scaffolds for tissue engineering of bone by applying rapid prototyping technologies, in: Proceedings of the symposium Processing and Fabrication of Advanced Materials VIII, ed. K.A. Khor, T.S. Srivatsan. M. Wong, W. Zhou and F. Boey. World Scientific Publishing Co. Pte. Ltd., Singapore (2000) 201

  13. S. J. KALITA, S. BOSE, H. L. HOSICK and A. BANDYOPADHYAY, Mater. Sci. Eng. C23 (2003) 611

    CAS  Google Scholar 

  14. X. YU, E. A. BOTCHWEY, E. M. LEVINE, S. R. POLLACK and C. T. LAURENCIN, Proc. Natl. Acad. Sci. USA. 31 (2004) 11203

    Article  Google Scholar 

  15. H. SINGH, S. H TEOH, H. T. LOW and D. W. HUTMACHER, J. Biotechnol. 119 (2005) 181

    Article  CAS  Google Scholar 

  16. G. ALTMAN, R. HORAN, I. MARTIN, J. FARHADI, P. STARK, V. VOLLOCH, J. RICHMOND, G. VUNJAK-NOVAIKOVIC and D. L. KAPLAN, FASEB J. 16 (2002) 270

    CAS  Google Scholar 

  17. P. BIANCO, M. RIMINUCCI, S. GRONTHOS and P. G. ROBEY, Stem Cells 19 (2001) 180

    Article  CAS  Google Scholar 

  18. J. B. LIAN and G. S. STEIN, Iowa Orthop. J. 15 (1995) 118

    CAS  Google Scholar 

  19. N. JAISWAL, S. E. HAYNESWORTH, A. I. CAPLAN and S. P. BRUDER, J. Cell. Biochem. 64 (1997) 295

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Detsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Detsch, R., Uhl, F., Deisinger, U. et al. 3D-Cultivation of bone marrow stromal cells on hydroxyapatite scaffolds fabricated by dispense-plotting and negative mould technique. J Mater Sci: Mater Med 19, 1491–1496 (2008). https://doi.org/10.1007/s10856-007-3297-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3297-x

Keywords

Navigation