Skip to main content
Log in

The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Biphasic calcium phosphate ceramics (BCP) comprising a mix of non-resorbable hydroxyapatite (HA) and resorbable β-tricalcium phosphate (β-TCP) are particularly suitable materials for synthetic bone substitute applications. In this study, HA synthesised by solid state reaction was mechanically mixed with β-TCP, then sintered to form a suite of BCP materials with a wide range of HA/β-TCP phase content ratios. The influence of sintering temperature and composition on the HA thermal stability was quantified by X-ray diffraction (XRD). The pre-sinter β-TCP content was found to strongly affect the post-sinter HA/β-TCP ratio by promoting the thermal decomposition of HA to β-TCP, even at sintering temperatures as low as 850 °C. For BCP material with pre-sinter HA/β-TCP = 40/60 wt%, approximately 80% of the HA decomposed to β-TCP during sintering at 1000 °C. Furthermore, the HA content appeared to influence the reverse transformation of α-TCP to β-TCP expected upon gradual cooling from sintering temperatures greater than 1125 °C. Because the HA/β-TCP ratio dominantly determines the rate and extent of BCP resorption in vivo, the possible thermal decomposition of HA during BCP synthesis must be considered, particularly if high temperature treatments are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. DACULSI, R. Z. LEGEROS, E. NERY, K. LYNCH and B. KEREBEL, J. Biomed. Mater. Res. 23 (1989) 883

    Article  CAS  Google Scholar 

  2. U. RIPAMONTI, Biomaterials 17 (1996) 31

    Article  CAS  Google Scholar 

  3. M. VALLET-REGI and J. M. GONZALEZ-CALBET, Progr. Solid State Chem. 32 (2004) 1

    Article  CAS  Google Scholar 

  4. S. YAMADA, D. HEYMANN, J. M. BOULER and G. DACULSI, Biomaterials 18 (1997) 1037

    Article  CAS  Google Scholar 

  5. G. DACULSI, Biomaterials 19 (1998) 1473

    Article  CAS  Google Scholar 

  6. T. LIVINGSTONE ARINZEH, T. TRAN, J. MCALARY and G. DACULSI, Biomaterials 26 (2005) 3631

    Article  CAS  Google Scholar 

  7. P. HABIBOVIC, H. YUAN, C. M. Van Der VALK, G. MEIJER, C. A. Van BLITTERSWIJK and K. De GROOT, Biomaterials 26 (2005) 3565

    Article  CAS  Google Scholar 

  8. J. M. CURRAN, J. A. GALLAGHER and J. A. HUNT, Biomaterials 26 (2005) 5313

    Article  CAS  Google Scholar 

  9. R. AYERS, S. NIELSEN-PREISS, V. FERGUSON, G. GOTOLLI, J. J. MOORE and H. J. KLEEBE, Mater. Sci. Eng. C 26 (2005) 1333

    Article  CAS  Google Scholar 

  10. D. LE NIHOUANNEN, G. DACULSI, A. SAFFRAZADEH, O. GAUTHIER, S. DELPLACE, P. PILET and P. LAYROLLE, Bone 36 (2005) 1086

    Article  CAS  Google Scholar 

  11. C. E. WILSON, M. C. KRUYT, J. D. De BRUIJN, C. A. Van BLITTERSWIJK, F. CUMHUR ONER, A. J. VERBOUT and W. J. A. DHERT, Biomaterials 27 (2006) 302

    Article  CAS  Google Scholar 

  12. E. GOYENVALLE, E. AGUADO, J. M. NGUYEN, N. PASSUIT, L. LE GUENENNEC, P. LAYROLLE and G. DACULSI, Biomaterials 27 (2006) 1119

    Article  CAS  Google Scholar 

  13. W. SUCHANEK and M. YOSHIMURA, J. Mater. Res. 13 (1998) 94

    Article  CAS  Google Scholar 

  14. Z. YANG, Y. JIANG, Y. WANG, L. MA and F. LI, Mater. Lett. 58 (2004) 3586

    Article  CAS  Google Scholar 

  15. A. CÜNEYT TAS, F. KORKUSUZ, M. TIMUCIN and N. AKKAS, J. Mater. Sci. Mater. Med. 8 (1997) 91

    Article  Google Scholar 

  16. N. KIVRAK and A. CÜNEYT TAS, J. Am. Ceram. Soc. 81 (1998) 2245

    Article  CAS  Google Scholar 

  17. I. R. GIBSON, I. REHMAN, S. M. BEST and W. BONFIELD, J. Mater. Sci. Mater. Med. 11 (2000) 533

    Article  CAS  Google Scholar 

  18. E. CAROLINE-VICTORIA and F. D. GNANAM, Trends Biomater. Artifi. Organs 16 (2002) 12

    Google Scholar 

  19. S. H. KWOM, Y. K. JUN, S. H. HONG and H. E. KIM, J. Euro. Ceram. Soc. 23 (2003) 1039

    Article  Google Scholar 

  20. S. KANNAN, J. H. G. ROCHA, J. M. G. VENTURA, A. F. LEMOS and J. M. F FERREIRA, Scripta Mater. 53 (2002) 1259

    Google Scholar 

  21. J. ZHOU, X. ZHANG, J. CHEN, S. ZENG and K. De GROOT, J. Mater. Sci. Mater. Med. 4 (1993) 83

    Article  CAS  Google Scholar 

  22. H. LI, B. S. NG, K. A. KHOR, P. CHEANG and T. W. CLYNE, Acta Mater. 52 (2004) 445

    Article  CAS  Google Scholar 

  23. S. DYSHLOVENKO, C. PIERLOT, L. PAWLOWSKI, R. TOMASZEK and P. CHAGNON, Surface Coat. Technol. 201 (2006) 2054

    Article  CAS  Google Scholar 

  24. R. B. HEIMANN, Surf. Coat. Technol. 201 (2006) 2012

    Article  CAS  Google Scholar 

  25. C. J. LIAO, F. H. LIN, K. S. CHEN and J. S. SUN, Biomaterials 20 (1999) 1807

    Article  CAS  Google Scholar 

  26. S. RAYNAUD, E. CHAMPION, D. BERNACHE-ASSOLLANT and P. THOMAS, Biomaterials 23 (2002) 1065

    Article  CAS  Google Scholar 

  27. C. P. A. T. KLEIN, J. G. C. WOLKE and K. DE GROOT, in “An Introduction to Bioceramics”, edited by L. L. HENCH and J. WILSON (World Scientific Publishing, 1993) p. 199

  28. R. Z. LEGEROS and J. P. LEGEROS, in “An Introduction to Bioceramics”, edited by L. L. HENCH and J. WILSON, (World Scientific Publishing, 1993) p. 139

  29. R. RAMACHANDRA RAO, R. RAI, H. N. ROOPA and T. S. KANNAN, J. Mater. Sci. Mater. Med. 8 (1997) 511

    Article  CAS  Google Scholar 

  30. F. FAZAN and K. B. N. SHAHIDA, Med. J. Malaysia 59 (2004) 69

    Google Scholar 

  31. F. H. CHUNG, Journal of Applied Crystallography 7 (1974) 513

    Article  Google Scholar 

  32. S. RAYNAUD, E. CHAMPION, D. BERNACHE-ASSOLLANT and J.-P. LAVAL, J. Am. Ceram. Soc. 84 (2001) 359

    Article  CAS  Google Scholar 

  33. F.-H. LIN, L. CHUN-JEN, C. KO-SHAO and S. JUI-SHENG, Mater. Sci. Eng. C 13 (2000) 97

    Article  Google Scholar 

  34. A. RAPACZ-KMITA, C. PALUSZKIEWICZ, A. SLOSARCZYK, Z. PASKIEWICS, J. Mol. Struct. 744–747 (2005) 653

    Article  CAS  Google Scholar 

  35. E. LANDI, A. AMPIERI, G. CELOTTI and S. SPRIO, J. Eur. Ceram. Soc. 20 (2000) 2377

    Article  CAS  Google Scholar 

  36. S. MEEJOO, W. MANEEPRAKORN and P. WINOTAI, Thermochim. Acta 447 (2006) 115

    Article  CAS  Google Scholar 

  37. G. MURALITHRAN and S. RAMESH, Ceram. Int. 26 (2000) 221

    Article  CAS  Google Scholar 

  38. M. DESCAMPS, J. C. HORNEZ and A. LERICHE, J. Eur. Ceram. Soc. (2006). In press (doi:10.1016/j.jeurceramsoc.2006.09.005)

  39. P. E. WANG and T. K. CHAKI, J. Mater. Sci. Mater. Med. 4 (1993) 150

    Article  CAS  Google Scholar 

  40. S. NAKUMURA, R. OTSUKA and H. AOKI, Thermochim. Acta 165 (1990) 57

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (RN) would like to thank the SRP of the Council for Scientific and Industrial Research (CSIR) for funding this study on the YREF program. The XRD and FTIR measurements were carried out at the National Metrology Laboratory of the CSIR, with assistance from Retha Rossouw and Eino Vuorinen respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. W. Richter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilen, R.W.N., Richter, P.W. The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics. J Mater Sci: Mater Med 19, 1693–1702 (2008). https://doi.org/10.1007/s10856-007-3252-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3252-x

Keywords

Navigation