Skip to main content
Log in

Effect of biomimetic conditions on mechanical and structural integrity of PGA/P4HB and electrospun PCL scaffolds

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The selection of an appropriate scaffold represents one major key to success in tissue engineering. In cardiovascular applications, where a load-bearing structure is required, scaffolds need to demonstrate sufficient mechanical properties and importantly, reliable retention of these properties during the developmental phase of the tissue engineered construct. The effect of in vitro culture conditions, time and mechanical loading on the retention of mechanical properties of two scaffold types was investigated. First candidate tested was a poly-glycolic acid non-woven fiber mesh, coated with poly-4-hydroxybutyrate (PGA/P4HB), the standard scaffold used successfully in cardiovascular tissue engineering applications. As an alternative, an electrospun poly-ε-caprolactone (PCL) scaffold was used. A 15-day dynamic loading protocol was applied to the scaffolds. Additionally, control scaffolds were incubated statically. All studies were performed in a simulated physiological environment (phosphate-buffered saline solution, T = 37 °C). PGA/P4HB scaffolds showed a dramatic decrease in mechanical properties as a function of incubation time and straining. Mechanical loading had a significant effect on PCL scaffold properties. Degradation as well as fiber fatigue caused by loading promote loss of mechanical properties in PGA/P4HB scaffolds. For PCL, fiber reorganization due to straining seems to be the main reason behind the brittle behavior that was pronounced in these scaffolds. It is suggested that those changes in scaffolds’ mechanical properties must be considered at the application of in vitro tissue engineering protocols and should ideally be taken over by tissue formation to maintain mechanically stable tissue constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. P. HOERSTRUP, R. SODIAN, J. S. SPERLING, J. P. VACANTI and J. E. MAYER Jr., Tissue Eng. 6 (2000) 75

    Article  CAS  Google Scholar 

  2. R. SODIAN, T. LEMKE, M. LOEBE, S. P. HOERSTRUP, E. V. POTAPOV, H. HAUSMANN, R. MEYER and R. HETZER, J. Biomed. Mater. Res. 58 (2002) 401

    Article  Google Scholar 

  3. A. MOL, C. V. C. BOUTEN, G. ZUND, C. I. GUNTER, J. F. VISJAGER, M. I. TURINA, F. P. T. BAAIJENS and S. P. HOERSTRUP, Thorac. Cardiovasc. Surg. 51 (2003) 78

    Article  CAS  Google Scholar 

  4. G. C. ENGELMAYR Jr., D. K. HILDEBRAND, F. W. SUTHERLAND, J. E. MAYER Jr. and M. S. SACKS, Biomater. 24 (2003) 2523

    Article  CAS  Google Scholar 

  5. D. W. HUTMACHER, Biomater. 21 (2000) 2529

    Article  CAS  Google Scholar 

  6. J. A. MATTHEWS, G. E. WNEK, D. G. SIMPSON and G. L. BOWLIN, Biomacromol. 3 (2002) 232

    Article  CAS  Google Scholar 

  7. X. ZONG, S. RAN, D. FANG, B. S. HSIAO and B. CHU, Polymer 44 (2003) 4959

    Article  CAS  Google Scholar 

  8. W.-J. LI, C. T. LAURENCIN, E. J. CATERSON, R. S. TUAN and F. K. KO, J. Biomed. Mater. Res. 60 (2002) 613

    Article  CAS  Google Scholar 

  9. Y. K. LUU, K. KIM, B. S. HSIAO, B. CHU and M. HADJIARGYROU, J. Control. Rel. 89 (2003) 341

    Article  CAS  Google Scholar 

  10. J. J. STANKUS, J. GUAN and W. R. WAGNER, J. Biomed. Mater. Res. 70A (2004) 603

    Article  CAS  Google Scholar 

  11. K. OHGO, C. ZHAO, M. KOBAYASHI and T. ASAKURA, Polymer 44 (2003) 841

    Article  CAS  Google Scholar 

  12. D. E. THOMPSON, C. M. AGRAWAL and K. A. ATHANASIOU, Tissue Eng. 2 (1996) 61

    Article  CAS  Google Scholar 

  13. D. W. HUTMACHER, T. SCHANTZ, I. ZEIN, K. W. NG, S. H. TEOH and K. C. TAN, J. Biomed. Mater. Res. 55 (2001) 203

    Article  CAS  Google Scholar 

  14. L. E. NIKLASON, J. GAO, W. M. ABBOTT, K. K. HIRSCHI, S. HOUSER, R. MARINI and R. LANGER, Science 284 (1999) 489

    Article  CAS  Google Scholar 

  15. M. A. SLIVKA, N. C. LEATHERBURY, K. KIESWETTER and G. G. NIEDERAUER, in “ASTM STP 1396” (West Conshohocken, PA: American Society for Testing and Materials, 2000) p. 124

  16. A. T. SHUM and A. F. MAK, Polym. Degrad. Stab. 81 (2003) 141

    Article  CAS  Google Scholar 

  17. S. P. HOERSTRUP, R. SODIAN, S. DAEBRITZ, J. WANG, E. A. BACHA, D. P. MARTIN, A. M. MORAN, K. J. GULESERIAN, J. S. SPERLING, S. KAUSHAL, J. P. VACANTI, F. J. SCHOEN and J. E. MAYER Jr., Circulation 102 (2000) III44

    CAS  Google Scholar 

  18. S. P. HOERSTRUP, G. ZUND, R. SODIAN, A. M. SCHNELL, J. GRUNENFELDER and M. I. TURINA, Eur. J. Cardiothorac. Surg. 20 (2001) 164

    Article  CAS  Google Scholar 

  19. R. SODIAN, S. P. HOERSTRUP, J. S. SPERLING, D. P. MARTIN, S. DAEBRITZ, J. E. MAYER Jr. and J. P. VACANTI, ASAIO J. 46 (2000) 107

    Article  CAS  Google Scholar 

  20. M. I. van LIESHOUT, C. M. VAZ, M. C. M. RUTTEN, G. W. M. PETERS and F. P. T. BAAIJENS, J. Biomater. Sci.: Polym. Ed. 17(1) (2006) 77

    Google Scholar 

  21. A. G. A. COOMBES, S. C. RIZZI, M. WILLIAMSON, J. E. BARRALET, S. DOWNES and W. A. WALLACE, Biomat. 25 (2004) 315

    Article  CAS  Google Scholar 

  22. S. YANG, K. F. LEONG, Z. DU and C. K. CHUA, Tissue Eng. 7 (2001) 679

    Article  CAS  Google Scholar 

  23. B. S. KIM and D. J. MOONEY, J. Biomech. Eng. 122 (2000) 210

    Article  CAS  Google Scholar 

  24. B. S. KIM, J. NIKOLOVSKI, J. BONADIO and D. J. MOONEY, Nat. Biotechnol. 17 (1999) 979

    Article  CAS  Google Scholar 

  25. V. CRESCENZI, G. MANZINI, G. CALZOLARI and C. BORRI, Eur. Polym. J. 8 (1972) 449

    Article  CAS  Google Scholar 

  26. S. M. LI, H. GARREAU and M. VERT, J. Mater. Sci. Mater. Med. 1 (1990) 198

    Article  CAS  Google Scholar 

  27. B. WUNDERLICH, in “Macromolecular Physics” (Academic Press, London, 1980) vol. 3

Download references

Acknowledgments

We would like to express our gratitude to Rob van den Berg for the development of the bioreactor, Rob Petterson for assisting with mechanical testing and the motor, Marc van Maris for the introduction to E-SEM, Matthijs de Geus & Madri Smit for helping with DSC and Martin Koens for his assistance at electrospinning. Leda Klouda is a scholarship recipient of the Alexander S. Onassis Public Benefit Foundation, Athens, Greece, whom she is thanking herewith.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leda Klouda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klouda, L., Vaz, C.M., Mol, A. et al. Effect of biomimetic conditions on mechanical and structural integrity of PGA/P4HB and electrospun PCL scaffolds. J Mater Sci: Mater Med 19, 1137–1144 (2008). https://doi.org/10.1007/s10856-007-0171-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-0171-9

Keywords

Navigation