Skip to main content
Log in

Latex of immunodiagnosis for detecting the Chagas disease. I. Synthesis of the base carboxylated latex

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This article investigates the synthesis of two (monodisperse, carboxylated, and core-shell) latexes, through a batch and a semibatch emulsion copolymerizations of styrene (St) and methacrylic acid (MAA) onto polystyrene latex seeds. A mathematical model of the process was developed that predicts conversion, average particle size, and surface density of carboxyl groups. The model was adjusted to the batch reaction measurements, and then it was used in the design of the semibatch experiment. The semibatch reaction involved an initial homopolymerization of St followed by instantaneous addition of MAA-St-initiator. Compared with the batch reaction results, the semibatch policy more than doubled the surface density of carboxyl groups. The second part of this series describes the development of an immunodiagnosis latex–protein complex for detecting the Chagas disease, by coupling an antigen of Trypanosoma cruzi onto the produced carboxylated latexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A or MAA:

methacrylic acid monomer.

\(\hbox{A}_{1}^{\cdot}, \, \hbox{S}_{1}^{\cdot}\) :

Primary A and S radicals.

\(\hbox{A}_{n}^{\cdot}, \, S_{n}^{\cdot}\) :

A- and S-ended radicals of chain length n.

A p :

Total area of polymer particles [cm2].

C NaOH :

NaOH concentration [mEq/g].

\(\bar{D}\) :

Average particle diameter [nm].

f:

Initiation efficiency.

F:

Faraday constant [μC/mEq].

F i, in :

Inlet molar flow rate of species i [mol/s].

f S :

Molar fraction of St with respect to the total monomer.

h :

Depth of the external particle shell where the reactive (SO =4 and COOH) groups are accessed by the conductimetric titration [nm].

I2 :

Water-soluble initiator.

[i] j :

Concentration of comonomer i in phase j [mol/cm3].

ka :

Rate constant of radical absorption into the polymer particles [cm3/mol s].

kd :

Rate constant of initiator decomposition [s−1].

kde :

Rate constant of radical desorption from the polymer particles [s−1].

kfij :

Transfer rate constant between an i-ended propagating radical and a j-monomer [cm3/mol s].

kpSS, kpAA :

Homopropagation rate constants of S and A [cm3/mol s].

kpAS, KpSA :

Cross-propagation rate constants [cm3/mol s].

kpcS, kpcA :

Rate of generation of primary monomeric radicals.

ktp :

Rate constant of global termination in the polymer phase [cm3/mol s].

ktw :

Rate constant of global termination in the aqueous phase [cm3/mol s].

K m i :

Partition coefficient of comonomer i between the monomer and the aqueous phases.

K p i :

Partition coefficient of comonomer i between the polymer and the aqueous phases.

m s :

Total latex mass [g].

M i :

Molecular weight of comonomer i [g/mol].

\(m_{{\rm NaOH,\,SO}_4^=},\, m_{\rm NaOH,\,COOH}\) :

Mass of NaOH required for neutralizing the SO =4 and COOH reactive groups, respectively [g].

\(\bar{n}\) :

Average number of free-radicals per particle.

NAv :

Avogadro’s constant.

N i :

Moles of species i (i = A, S, I).

Np :

Total number of polymer particles.

N i,b :

Total moles of bound (or polymerized) comonomer i.

\(N_{i,{\rm b}}^{\rm w}\) :

Moles of bound (or polymerized) comonomer i in the aqueous phase.

P n :

Dead polymer of chain length n.

rS, rA :

Reactivity ratios of St and MAA, respectively.

R ·c :

Primary initiator radical.

R · n :

Free-radical of chain length n, representing either S · n or A · n .

\(R_{{\rm p}i}^j \) :

Rate of polymerization of comonomer i in phase j [mol/cm3 s].

[R ·]w :

Total concentration of free-radicals in the aqueous phase [mol/cm3].

S or St:

Styrene monomer.

V j :

Total volume of phase j [cm3].

V pol :

Total dry polymer volume [cm3].

v i :

Molar volume of comonomer i [cm3/mol].

V i :

Total volume of comonomer i [cm3].

V j i :

Total volume of comonomer i in phase j [cm3].

V wW :

Total volume of water in the aqueous phase [cm3].

w s :

Solid content or weight fraction of polymer [%].

x :

Global mass conversion.

x j :

Global mass conversion in phase j.

x i :

Global conversion of comonomer i.

x j i :

Conversion of comonomer i in phase j.

X ih :

Average molar fraction of comonomer i in the copolymer contained in an external shell of depth h.

X i :

Molar fraction of comonomer i in the total copolymer.

X j i :

Molar fraction of comonomer i in the copolymer produced in phase j.

X i, inst :

Instantaneous molar fraction of comonomer i in the global copolymer.

X j i, inst :

Instantaneous molar fraction of comonomer i in the copolymer being produced in phase j.

\(\delta_{{\rm SO}_4^{=},\,h}, \, \delta_{{\rm COOH},\,h}\) :

Density of sulfate and carboxyl groups in an external shell of depth h [mEq/cm2].

ϕ m i :

Volume fraction of comonomer i in the monomer phase.

ϕ p i :

Volume fraction of comonomer i in the polymer droplets phase.

ρs :

Dry polymer density [g/cm3].

σ:

Surface charge density [μC/cm2].

References

  1. C. PICHOT, T. DELAIR and A. ELAÏSSARI, in Polymeric Dispersions: Principles and Applications, edited by J. M. Asua, NATO ASI Series, Series E, Vol. 335(Dordrecht: Kluwer Academic Pub., 1997), p. 515

  2. R. J. COHEN and G. B. BENEDEK, Immunochemistry 12 (1975) 349

    Article  CAS  Google Scholar 

  3. G. QUAST, A. M. ROCH, A. NIVELEAU, J. GRANGE, T. KEOLOUANGKHOT and J. HUPPERT, J. Immunol. Methods 22 (1978) 165

    Article  Google Scholar 

  4. W. J. LITCHFIELD, A. R. CRAIG, W. A. FREY, C. C. LEFLAR, C. E. LOONEY and M. A. LUDDY, Clin. Chem. 30 (1984) 1489

    CAS  Google Scholar 

  5. W. H. KAPMEYER, H. E. PAULY and P. TUENGLER, J. Clin. Lab. Anal. 2 (1988) 76

    Article  Google Scholar 

  6. W. H. KAPMEYER, Pure Appl. Chem. 63 (1991) 1135

    Article  CAS  Google Scholar 

  7. P. MONTAGNE, P. LAROCHE, M. L. CUILLIERE, P. VARCIN, B. PAU and J. DUHEILLE, J. Clin. Lab. Anal. 6 (1992) 24

    Article  CAS  Google Scholar 

  8. T. BASINSKA and S. SLOMKOWSKI, in Uses of Immobilized Biological Compounds, edited by G. G. Guilbaut and M. Mascini (Netherlands, 1993)

  9. J. M. PEULA, R. HIDALGO-ÁLVAREZ, R. SANTOS, J. FORCADA and F. J. DE LAS NIEVES, J. Mater. Sci.: Mater. Med. 6 (1995) 779

    Article  CAS  Google Scholar 

  10. L. J. ORTEGA-VINUESA, J. A. MOLINA-BOLÍVAR and R. HIDALGO-ÁLVAREZ, J. Immunol. Methods 190 (1996) 29

    Article  CAS  Google Scholar 

  11. J. SAROBE, I. MIRABALLES, J. A. MOLINA, J. FORCADA and R. HIDALGO-ÁLVAREZ, Polym. Adv. Technol. 7 (1996) 749

    Article  CAS  Google Scholar 

  12. D. BASTOS-GONZÁLEZ, R. SANTOS-PÉREZ, J. FORCADA, R. HIDALGO-ÁLVAREZ and F. J. DE LAS NIEVES, Colloid Surf. A 92 (1994) 137

    Article  Google Scholar 

  13. S. GIBANEL, V. HEROGUES, Y. GNANOU, E. ARAMENDIA, A. BUSCI and J. FORCADA, Polym. Adv. Technol. 12(8) (2001) 494

    Article  CAS  Google Scholar 

  14. TH. DELAIR, V. MARGUET, C. PICHOT and B. MANDRAND, Colloid Polym. Sci. 272 (1994) 962

    Article  CAS  Google Scholar 

  15. M. P. SANZ IZQUIERDO, A. MARTÍN-MOLINA, J. RAMOS, A. RUS, L. BORQUE, J. FORCADA and F. GALISTEO-GONZÁLEZ, J. Immunol. Methods 287 (2004) 159

    Article  CAS  Google Scholar 

  16. D. BASTOS-GONZÁLEZ, J. L. ORTEGA-VINUESA, F. J. DE LAS NIEVES and R. J. HIDALGO-ÁLVAREZ, J. Colloid Interf. Sci. 176 (1995) 232

    Article  Google Scholar 

  17. C. F. LEE, T. H. YOUNG, Y. H. HUANG and W. Y. CHIU, Polymer 41 (2000) 8565

    Article  CAS  Google Scholar 

  18. A. YU. MENSHIKOVA, T. G. EVSEEVA, YU. O. SKURKIS, T. B. TENNIKOVA and S. S. IVANCHEV, Polymer 46 (2005) 1417

    Article  CAS  Google Scholar 

  19. K. KANG, C. KAN, Y. DU and D. LIU, Eur. Polym. J. 41 (2005) 439

    Article  CAS  Google Scholar 

  20. A. M. DOS SANTOS, T. F. MCKENNA and J. GUILLOT, J. Appl. Polym. Sci. 65 (1997) 2343

    Article  Google Scholar 

  21. M. SLAWINSKI, M. A. SCHELLEKENS, J. MEULDIJK, A. M. VAN HERK and A. L. GERMAN, J. Appl. Polym. Sci. 76 (2000) 1186

    Article  CAS  Google Scholar 

  22. M. SLAWINSKI, J. MEULDIJK, A. M. VAN HERK and A. L. GERMAN, J. Appl. Polym. Sci. 78 (2000) 875

    Article  CAS  Google Scholar 

  23. M. OKUBO, S. KAMEI, Y. TOSAKI, K. FUKUNAGA and T. MATSUMOTO, Colloid Polym. Sci. 265 (1987) 957

    Article  CAS  Google Scholar 

  24. I. MIRABALLES-MARTÍNEZ, A. MARTÍN-RODRÍGUEZ and R. HIDALGO-ÁLVAREZ, J. Biomater. Sci. – Polym. Ed. 8(10) (1997) 765

    Google Scholar 

  25. J. SAROBE, J. A. MOLINA-BOLÍVAR, J. FORCADA, F. GALISTEO and R. HIDALGO-ÁLVAREZ, Macromolecules 31(13) (1998) 4282

    Article  CAS  Google Scholar 

  26. R. M. SANTOS and J. FORCADA, Prog. Colloid Polym. Sci. 100 (1996) 87

    Article  CAS  Google Scholar 

  27. L. TSAUR and R. M. FITCH, J. Colloid Interf. Sci. 115 (1987) 450

    Article  CAS  Google Scholar 

  28. SERADYN Inc., Procedures, Particle Technology, Microparticle Immunoassay Techniques (Particle Technique División, 1988)

  29. J. W. VANDERHOFF and H. J. VAN DEN HUL, J. Macromol. Sci. Chem. A7(3) (1973) 677

    Article  Google Scholar 

  30. Z. SONG and G.W. POEHLEIN, J. Colloid Interf. Sci. 128(2) (1989) 501

    Article  CAS  Google Scholar 

  31. S. A. CHEN, S. T. LEE and S. J. LEE, Makromol. Chem., Macromol. Symp. 35/36 (1990) 349

    Google Scholar 

  32. W. D. HERGETH, K. SCHMUTZLER and W. SIEGFRIED, Makromol. Chem., Macromol. Symp. 31 (1990) 123

    Google Scholar 

  33. C. WANG, W. YANG and S. FU, in Colloidal Polymers. Synthesis and Characterization, edited by A. Elaissari, Surfactant Science Series, Vol. 115 (New York: Marcel Dekker, 2003), p. 93

  34. www.bangslabs.com, www.seradyn.com

  35. C. YAN, “Study of Ternary Emulsifier-free Emulsion Copolymerization and its Latex Particles as Support of Protein.” PhD Dissertation (Hangzhou, China: Zhejiang University, 1998)

  36. B. EMELIE, C. PICHOT and J. GUILLOT, Makromol. Chem., Macromol. Chem. Phys. 189 (1998) 1879

    Google Scholar 

  37. E. SALDIVAR, P. DAFNIOTIS and W. H. RAY, J. Macromol. Sci., R. M. C. 38 (1998) 207

    Google Scholar 

  38. J. GAO and A. PENDILIS, Prog. Polym. Sci. 27 (2002) 403

    Article  CAS  Google Scholar 

  39. J. SNUPAREK and F. KRSKA, J. Appl. Polym. Sci. 21 (1977) 2253

    Article  CAS  Google Scholar 

  40. G. ARZAMENDI and J. M. ASUA, J. Appl. Polym. Sci. 38 (1989) 2019

    Article  CAS  Google Scholar 

  41. G. ARZAMENDI and J. M. ASUA, Makromol. Chem., Macromol. Symp. 35/36 (1990) 249

    Google Scholar 

  42. G. ARZAMENDI and J. M. ASUA, Ind. Eng. Chem. Res. 30 (1991) 1342

    Article  CAS  Google Scholar 

  43. J. R. LEIZA, J. C. DE LA CAL, G. R. MEIRA and J. M. ASUA, Polym. React. Eng. 1(4) (1993) 461

    Google Scholar 

  44. S. CANEGALLO, P. CANU, M. MORBIDELLI and G. STORTI, J. Appl. Polym. Sci. 54 (1994) 1919

    Article  CAS  Google Scholar 

  45. M. VAN DEN BRINK, M. PEPERS, A. M. VAN HERK and A. L. GERMAN, Polym. React. Eng. 9(2) (2001) 101

    Article  CAS  Google Scholar 

  46. W. D. HERGETH, S. WARTEWIG, Z. RANACHOWSKI, J. RZESZOTARSKA and J. RANACHOWSKI, Acta Polym. 39 (1988) 677

    Article  CAS  Google Scholar 

  47. K. HÖRNING, W. D. HERGETH and S. WARTEWIG, Acta Polym. 40 (1989) 257

    Article  Google Scholar 

  48. A. URRETABIZKAIA, E. D. SUDOL, M. S. EL-AASSER and J. M. ASUA, J. Polym. Sci. Pol. Chem. 31 (1993) 2907

    Article  CAS  Google Scholar 

  49. L. M. GUGLIOTTA, J. R. LEIZA, M. AROTÇARENA, P. D. ARMITAGE and J. M. ASUA, Ind. Eng. Chem. Res. 34 (1995) 3899

    Article  CAS  Google Scholar 

  50. A. SALAZAR, V. D. G. GONZALEZ, L. M. GUGLIOTTA and G. R. MEIRA, in Proceedings of the IV Simposio Argentino de Polímeros, Córdoba, Argentina, Nov. 1999, p. 157

  51. V. D. G. GONZALEZ, L. M. GUGLIOTTA, J. R. VEGA and G. R. MEIRA, J. Colloid Interf. Sci. 285(2) (2005) 581

    Article  CAS  Google Scholar 

  52. A. SALAZAR, L. M. GUGLIOTTA, J. R. VEGA and G. R. MEIRA, Ind. Eng. Chem. Res. 37 (1998) 3582

    Article  CAS  Google Scholar 

  53. L. M. GUGLIOTTA, G. ARZAMENDI and J. M. ASUA, J. Appl. Polym. Sci. 55 (1995) 1017

    Article  CAS  Google Scholar 

  54. D. M. LANGE and G. W. POEHLEIN, Polym. React. Eng. 1(1) (1992) 41

    CAS  Google Scholar 

  55. G. L. SHOAF, PhD dissertation (Georgia Institute of Technology, 1989)

  56. M. L. LOPEZ DE ARABINA ECHEVERRÍA, Tesis Doctoral (Univ. del País Vasco, 1996)

  57. J. L. GARDON, J. Polym. Sci. Pol. Chem. 6 (1968) 643

    Article  CAS  Google Scholar 

  58. A. CRUZ RIVERA, L. RIOS-GUERRERO, C. MONNET, B. SCHLUN, J. GUILLOT and C. PICHOT, Polymer 60 (1989) 1873

    Google Scholar 

  59. F. R. MAYO and F. M. LEWIS, J. Am. Chem. Soc. 66 (1944) 1594

    Article  CAS  Google Scholar 

  60. D. M. LANGE and G. W. POEHLEIN, Polym. React. Eng. 1(1) (1992) 1

    CAS  Google Scholar 

  61. W. V. SMITH and R. H. EWART, J. Chem. Phys. 16 (1948) 592

    Article  CAS  Google Scholar 

  62. J. UGELSTAD and F. K. HANSEN, Rubber Chem. Technol. 49 (1976) 536

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support received from CONICET, SeCyT, and Universidad Nacional del Litoral (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregorio R. Meira.

Appendix: Mathematical model of a seeded emulsion copolymerization of St and MAA

Appendix: Mathematical model of a seeded emulsion copolymerization of St and MAA

Differential equations

From the kinetic scheme of Table 3, the following balances can be written for the moles of: comonomer i (N i ), of initiator (N I), of total bound (or polymerized) comonomer i (N i,b) with i = S, A, and of bound comonomer i in the phase j (N j i,b ) with j = p, w:

$$ \frac{\hbox{d}N_i} {\hbox{dt}}=F_{i,\;\hbox{in}} -R_{{\rm p}i}^{\rm p} V^{\rm p}-R_{{\rm p}i}^{\rm w} V^{\rm w}; \quad (i = \hbox{S, A}) $$
(A.1)
$$ \frac{\hbox{d}N_{\rm I}}{\hbox{dt}}=F_{\rm I,\; in} -\hbox{k}_{\rm d} N_{\rm I} $$
(A.2)
$$ \frac{\hbox{d}N_{i,{\rm b}}} {\hbox{dt}}=R_{{\rm p}i}^{\rm p} V^{\rm p}+R_{{\rm p}i}^{\rm w} V^{\rm w} $$
(A.3)
$$ \frac{\hbox{d}N_{i,{\rm b}}^j} {\hbox{dt}}=R_{{\rm p}i}^j V^{j} $$
(A.4)

where F i,in and F I,in are respectively the inlet molar flow rates of the comonomers (i = S, A), and of the initiator; R pi j is the polymerization rate of comonomer i in phase j (j = p, w); and V j is the volume of phase j.

Algebraic equations

Assuming additivity of volumes, one can write:

$$ V_i =V_i^{\rm m} +V_i^{\rm w} +V_i^{\rm p} ; \quad (i = \hbox{S, A}) $$
(A.5)
$$ V^{{\rm w}}=V_{\rm W}^{\rm w} +V_{\rm S}^{\rm w} +V_{\rm A}^{\rm w} $$
(A.6)
$$ V^{\rm p}=V_{\rm S}^{\rm p} +V_{\rm A}^{\rm p} +V_{\rm pol} $$
(A.7)
$$ V^{\rm m}=V_{\rm S}^{\rm m} +V_{\rm A}^{\rm m} $$
(A.8)

where V i is the total volume of comonomer i; V m i , V w i , and V p i are the total volumes of comonomer i in the monomer droplets phase, the aqueous phase, and the polymer particles phase, respectively; V wW is the total water volume in the water phase; and V pol is the (unswollen) total polymer volume.

The comonomers distribute themselves between the polymer, monomer, and aqueous phases, according the following constant partition coefficients:

$$ \hbox{K}_i^{\rm p} =\frac{\phi _i^{\rm p}}{\phi _i^{\rm w}}; \quad (i = \hbox{S, A}) $$
(A.9a)
$$ \hbox{K}_i^{\rm m} =\frac{\phi _i^{\rm m}} {\phi _i^{\rm w}}; \quad (i = \hbox{S, A}) $$
(A.9b)

with

$$ \phi _i^j =\frac{V_i^j} {V^{j}}; \quad (i = \hbox{S, A})\hbox{ and }(j = \hbox{p, m, w}) $$
(A.10)

where K p i and K m i are respectively the partition coefficients of comonomer i between the polymer phase and the aqueous phase, and between the monomer phase and the aqueous phase; and ϕ j i is the volume fraction of comonomer i in phase j.

From Eqs (A.5), (A.9), and (A.10), the following can be written:

$$ V_i^{\rm p} =\frac{V_i} {1+\frac{{\rm K}_i^{\rm m} }{{\rm K}_i^{\rm p}} \frac{V^{\rm m}}{V^{\rm p}}+\frac{1}{{\rm K}_i^{\rm p}}\frac{V^{\rm w}}{V^{\rm p}}} $$
(A.11)
$$ V_i^{\rm w} =\frac{1}{\hbox{K}_i^{\rm p}} \frac{V^{\rm w}}{V^{\rm p}}V_i^{\rm p} $$
(A.12)
$$ V_i^{\rm m} =\frac{\hbox{K}_i^{\rm m}} {\hbox{K}_i^{\rm p} }\frac{V^{\rm m}}{V^{\rm p}}V_i^{\rm p} $$
(A.13)

The molar concentration of comonomer i in phase j is:

$$ [i]_j =\frac{V_i^j} {V^{j}}\frac{1}{\hbox{v}_i}; \quad (i = \hbox{S, A}) $$
(A.14)

where v i is the molar volume of comonomer i.

In the aqueous phase, the mass balance for the total concentration of free radicals [R ·]w , yields [61]:

$$ 2\,\hbox{f } \hbox{k}_{\rm d} \,\frac{N_{\rm I}}{V^{\rm w}}+\hbox{k}_{\rm de} \frac{\bar{n} \hbox{N}_{\rm p} }{\hbox{N}_{\rm Av} V^{\rm w}}=\hbox{k}_{\rm a} [R^{\cdot}]_{\rm w} \frac{\hbox{N}_{\rm p}} {\hbox{N}_{\rm Av} V^{\rm w}}+2\;\hbox{k}_{\rm tw} \; [R^{\cdot}]_{\rm w}^2 $$
(A.15)

where f is the initiation efficiency; \(\bar{n}\) is the average number of free radicals per particle; Np is the total number of polymer particles; NAv is the Avogadro’s constant; kde is the rate constant of radical desorption from the polymer particles; and ka is the rate constant of radical absorption into the polymer particles. In turn, \(\bar{n}\) is given by [62]:

$$ \bar{n} =0.5\frac{2\alpha}{m+\frac{2\alpha}{m+1+\frac{2\alpha }{m+2+\cdots}}} $$
(A.16)

with

$$ \alpha =\alpha^{\prime}+m \bar{n}-\alpha^{2}Y $$
(A.17)
$$ \alpha^{\prime}=\frac{2\;\hbox{f}\;\hbox{k}_{\rm d}\; N_{\rm I} V^{\rm p}}{\hbox{k}_{\rm tp}\; \hbox{N}_{\rm p}^2} \hbox{N}_{\rm Av}^2 $$
(A.18)
$$ m=\frac{\hbox{k}_{\rm de} V^{\rm p}}{\hbox{k}_{\rm tp}\; \hbox{N}_{\rm p}}\hbox{N}_{\rm Av} $$
(A.19)
$$ Y=\frac{2\; \hbox{k}_{\rm tw}\; \hbox{k}_{\rm tp} V^{\rm w}}{\hbox{k}_{\rm a}^2 V^{\rm p}} $$
(A.20)

The reactivity ratios are defined by:

$$ \hbox{r}_{\rm S} =\frac{\hbox{k}_{\rm pSS}}{\hbox{k}_{\rm pSA}} $$
(A.21)
$$ \hbox{r}_{\rm A} =\frac{\hbox{k}_{\rm pAA}}{\hbox{k}_{\rm pAS}} $$
(A.22)

Then, the rates of comonomer consumption in each phase are obtained from:

$$ R_{{\rm p}i}^{\rm p} =\frac{\bar{n}\hbox{N}_{\rm p}} {V^{\rm p}\hbox{N}_{\rm Av}}\left\{ \frac{\hbox{k}_{\rm pSS}\; \hbox{k}_{\rm pAA} \left( \hbox{r}_i \left[ i \right]_{\rm p}^2 +\left[ \hbox{S} \right]_{\rm p} \left[ \hbox{A} \right]_{\rm p} \right)}{\hbox{k}_{\rm pAA}\; \hbox{r}_{\rm S} \left[ \hbox{S} \right]_{\rm p} \hbox{+k}_{\rm pSS}\; \hbox{r}_{\rm A} \left[ \hbox{A} \right]_{\rm p}} \right\} \quad (i = \hbox{S, A}) $$
(A.23)
$$ R_{{\rm p}i}^{\rm w} =\left[ R^{\cdot} \right]_{\rm w} \left\{ \frac{\hbox{k}_{\rm pSS}\; \hbox{k}_{\rm pAA} \left( \hbox{r}_i \left[ i \right]_{\rm w}^2 \hbox{+}\left[ \hbox{S} \right]_{\rm w} \left[ \hbox{A} \right]_{\rm w} \right)}{\hbox{k}_{\rm pAA}\; \hbox{r}_{\rm S} \left[ \hbox{S} \right]_{\rm w} \hbox{+k}_{\rm pSS} \; \hbox{r}_{\rm A} \left[ \hbox{A} \right]_{\rm w}} \right\}\quad (i = \hbox{S, A}) $$
(A.24)

After solving Eqs. (A.1–A.24), the following expressions calculate the global gravimetric conversion (x), the global conversion of comonomer i (x i ), the instantaneous molar composition of MAA units in the global copolymer (X A, inst), the instantaneous molar composition of MAA units in the copolymer produced in the phase j (X jA, inst ), the molar fraction of comonomer i in the total copolymer (X i ), the molar fraction of comonomer i in the copolymer contained in an outer shell of depth h (X ih ), and the unswollen average particle diameter (\(\bar{D})\):

$$ x=\frac{\hbox{M}_{\rm S} N_{\rm S,b} +\hbox{M}_{\rm A} N_{\rm A,b} }{\hbox{M}_{\rm S} \left( N_{\rm S,b} +N_{\rm S} \right)+\hbox{M}_{\rm A} \left( N_{\rm A,b} +N_{\rm A} \right)} $$
(A.25)
$$ x_i =\frac{N_{i\hbox{,b}}} {N_{i\hbox{,b}} +N_i} \quad (i = \hbox{S, A}) $$
(A.26)
$$ X_{i,\;{\rm inst}} =\frac{R_{{\rm p}i}^{\rm p} V^{\rm p}+R_{{\rm p}i}^{\rm w} V^{\rm w}}{R_{{\rm pS}}^{\rm p} V^{\rm p}+R_{{\rm pS}}^{\rm w} V^{\rm w}+R_{{\rm pA}}^{\rm p} V^{\rm p}+R_{{\rm pA}}^{\rm w} V^{\rm w}} \quad (i = \hbox{S, A}) $$
(A.27)
$$ X_{i,\;{\rm inst}}^j =\frac{R_{{\rm p}i}^j V^{j}}{R_{{\rm pS}}^j V^{j}+R_{{\rm pA}}^j V^{j}} \quad (i =\hbox{ S, A}) \hbox{ and } (j = \hbox{p, w}) $$
(A.28)
$$ X_i =\frac{N_{i{\rm ,b}}} {N_{\rm S,b}+N_{\rm A,b}} $$
(A.29)
$$ X_{i,\;h} =\frac{\left. {N_{i{\rm ,b}}} \right|_h} {\left. {N_{\rm S,b}} \right|_h +\left. {N_{\rm A,b}} \right|_h} $$
(A.30)
$$ \bar{D}=\left( \frac{\hbox{6}\;V_{\rm pol}}{\pi \hbox{N}_{\rm p}} \right)^{1/3} $$
(A.31)

where M i is the molecular weight of comonomer i. The moles of bound comonomers contained in the outer shell of depth h are calculated from the difference between the total bound comonomers contained up to the external diameter \(\bar{D}(t)\), and the total bound comonomers contained up to the internal diameter \((\bar{D}-h)(t)\), as follows:

$$ \left. {N_{i{\rm ,b}}} \right|_h =\left. {N_{i{\rm ,b}}} \right|_{\bar{D}} -\left. {N_{i{\rm ,b}}} \right|_{\bar{D}-h} $$
(A.32)

The total particle area (A p) and the external density of carboxyl groups (δCOOH, h ) are given by:

$$ A_{\rm p} =\pi \bar{D}^{2} \hbox{N}_{\rm p} $$
(A.33)
$$ \delta _{{\rm COOH,}\;h} =\frac{\left. {N_{\rm A,b}} \right|_h }{A_{\rm p}} \times \hbox{10}^3=\frac{\left. {N_{\rm A,b}} \right|_{\bar{D}} -\left. {N_{\rm A,b}} \right|_{\bar{D}-h}} {A_{\rm p}} \times \hbox{10}^3 $$
(A.34)

Finally, the total gravimetric conversion in the phase j (x j), the conversion of comonomer i in phase j (x j i ), and the molar fraction of comonomer i in the copolymer produced in phase j (X j i ), are given by:

$$ x^{j}=\frac{\hbox{M}_{\rm S} N_{\rm S,b}^j +\hbox{M}_{\rm A} N_{\rm A,b}^j} {\hbox{M}_{\rm S} \left( N_{\rm S,b} +N_{\rm S} \right)+\hbox{M}_{\rm A} \left( N_{\rm A,b} +N_{\rm A} \right)} \quad (j = \hbox{p, w}) $$
(A.35)
$$ x_i^j =\frac{N_{i{\rm ,b}}^j} {\left( N_{i{\rm ,b}} +N_i \right)}\quad (j = \hbox{p, w}) $$
(A.36)
$$ X_i^j =\frac{N_{i{\rm ,b}}^j} {N_{\rm S,b}^j +N_{\rm A,b}^j}\quad (j =\hbox{ p, w}) $$
(A.37)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, V.D.G., Gugliotta, L.M. & Meira, G.R. Latex of immunodiagnosis for detecting the Chagas disease. I. Synthesis of the base carboxylated latex. J Mater Sci: Mater Med 19, 777–788 (2008). https://doi.org/10.1007/s10856-006-0051-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-0051-8

Keywords

Navigation