Skip to main content
Log in

Three-dimensional nonwoven scaffolds from a novel biodegradable poly(ester amide) for tissue engineering applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Biodegradable polyesters are established biomaterials in medicine due to their chemical characteristics and options for material processing. A main problem, however, is the release of acid degradation products during biodegradation with severe local pH-drops and inflammatory reactions. Polyesteramides, in contrast, show a less prominent pH-drop during degradation. In this study, we developed a simple, reproducible synthesis of the poly(ester amide) (PEA) type C starting from ε-caprolactame, 1,4-butanediol, and adipic acid in a one-batch two-step reaction and conducted the manufacturing of PEA-derived 3D textile scaffolds applicable for tissue engineering purposes. The thermal and mechanical properties of PEA-type C were analysed and the structural conformity of different batches was confirmed by NMR spectroscopy and size exclusion chromatography. The polymer was formed into nonwovens by textile manufacturing. Cytotoxicity tests and X-ray photoelectron spectroscopy (XPS) were used to analyze the effect of scaffold extraction before cell seeding. The manufactured carriers were seeded with human preadipocytes and examined for cellular proliferation and differentiation. The production of PEA type C successfully occurred via simultaneous ring-opening polymerization of ε-caprolactame and polycondensation with 1,4-butanediol and adipic acid at 250 °C under high-vacuum. Soxhlet extraction allowed optimal cleaning of nonwoven scaffolds. Extracted PEA-derived matrices were capable of allowing good adherence, proliferation, and differentiation of preadipocytes. These results are encouraging and guidance towards an optimally prepared nonwoven carrier applicable for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. J. HUANG, in “Polymers - Biomaterials and Medical Application”, Edited by: J. I. KROSCHWITZ (Wiley & Sons, New York, 1989) p. 286

  2. H. KISE, M. KOBAYASHI and Y. FAN, J. Polym. Sci. 39 (2001) 1318

    Google Scholar 

  3. P. A. GUNATILLAKE and R. ADHIKARI, ECM 5 (2003) 1

    CAS  Google Scholar 

  4. M. S. TAYLER, A. U. DANIELS, K. P. ANDRIANO and J. HELLER, J. Appl. Biomater. 5 (1994) 151

    Article  Google Scholar 

  5. C. S. RANUCCI and P. V. MOGHE, Tissue Eng. 5 (1999) 407

    Article  CAS  Google Scholar 

  6. M. X. LI, R. X. ZHUO and F. Q. QU, J. Polym. Sci. Part A: Polym Chem. 40 (2002) 4550

    Article  CAS  Google Scholar 

  7. M. VERA, A. ADMETLLA, A. RODRIGUEZ-GALÁN and A. PUIGGALÍ, Polym. Degrad. Stab. 89 (2005) 21

    Article  CAS  Google Scholar 

  8. H. L. GUAN, C. DENG, X. Y. XU, Q. Z. LIANG, X. S. CHEN and X. B. JING, J. Polym. Sci. Part A: Polym Chem. 43 (2005) 1144

    Article  CAS  Google Scholar 

  9. H. KEUL and H. HÖCKER, Macromol. Rapid. Commun. 21 (2000) 869

    Article  CAS  Google Scholar 

  10. H. KEUL, B. ROBERTZ and H. HÖCKER, Macromol. Symp. 144 (1999) 47

    CAS  Google Scholar 

  11. P. A. ZUK, M. ZHU, P. ASHJIAN, D. A. DE UGARTE, J. I. HUANG, H. MIZUNO, et al., Mol. Biol. Cell. 13 (2002) 4279

  12. P. A. ZUK, M. ZHU, H. MIZUNO, J. HUANG, J. W. FUTRELL, A. J. KATZ, et al., Tissue Eng. 7 (2001) 211

  13. A. MIRANVILLE, C. HEESCHEN, C. SENGENÈS, C. A. CURAT, R. BUSSE and A. BOULOUMIE, Circulation 110 (2004) 349

    Article  CAS  Google Scholar 

  14. H. HAUNER, K. ROHRIG and T. PETRUSCHKE, Eur. J. Clin. Invest. 25 (1995) 90

    Article  CAS  Google Scholar 

  15. P. A. GUNATILLAKE and R. ADHIKARI, Eur. Cells Mater. 5 (2003) 1

    CAS  Google Scholar 

  16. L. J. SUGGS and A. G. MIKOS, in “Physical Properties of Polymers Handbook”, Vol. 96 (AIP Press, Woodbury, 1996) p. 625

  17. Y. IKADA and H. TSUJI, Macromol. Rapid. Commun. 21 (2000) 117

    Article  CAS  Google Scholar 

  18. D. KLEE, Z. ADEMOVIC, A. BOSSERHOFF, H. HOECKER, G. MAZIOLIS and H. J. ERLI, Biomaterials 24 (2003) 3663

    Article  CAS  Google Scholar 

  19. Y. JIAO, X. MA, S. YU and M. SHAO, Hua Xi Kou Qiang Yi Xue Za. Zhi. 18 (2000) 75

    CAS  Google Scholar 

  20. R. M. WYRE and S. DOWNES, Biomaterials 23 (2002) 357

    Article  CAS  Google Scholar 

  21. K. HEMMRICH, D. VON HEIMBURG, K. CIERPKA, S. HAYDARLIOGLU and N. PALLUA, Differentiation 73 (2005) 28

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work is part of a project funded by the “HOLSTE-Stiftung” of the RWTH Aachen University. Additionally, the Federal Ministry of Economics and Labour (BMWA = Bundesministerium für Wirtschaft und Arbeit) and its partner organisation the German Federation of Industrial Research Associations “Otto von Guericke” (Arbeitsgemeinschaft industrieller Forschungsvereinigungen “Otto von Guericke” e.V.) are gratefully thanked for financial support of the research project (AiF-No. 107 ZN/1). The authors are also grateful to the DECHEMA (Society for Chemical Engineering and Biotechnology) for cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Hemmrich.

Additional information

K. Hemmrich and J. Salber have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemmrich, K., Salber, J., Meersch, M. et al. Three-dimensional nonwoven scaffolds from a novel biodegradable poly(ester amide) for tissue engineering applications. J Mater Sci: Mater Med 19, 257–267 (2008). https://doi.org/10.1007/s10856-006-0048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-0048-3

Keywords

Navigation