Skip to main content
Log in

Review Peripheral nerve regeneration using non-tubular alginate gel crosslinked with covalent bonds

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

We have developed a nerve regeneration material consisting of alginate gel crosslinked with covalent bonds. in the first part of this study, we attempted to analyze nerve regeneration through alginate gel in the early stages within 2 weeks. in the second part, we tried to regenerate cat peripheral nerve by using alginate tubular or non-tubular nerve regeneration devices, and compared their efficacies. Four days after surgery, regenerating axons grew without Schwann cell investment through the partially degraded alginate gel, being in direct contact with the alginate without a basal lamina covering. One to 2 weeks after surgery, regenerating axons were surrounded by common Schwann cells, forming small bundles, with some axons at the periphery being partly in direct contact with alginate. At the distal stump, numerous Schwann cells had migrated into the alginate 8–14 days after surgery. Remarkable restorations of the 50-mm gap in cat sciatic nerve were obtained after a long term by using tubular or non-tubular nerve regeneration material consisting mainly of alginate gel. However, there was no significant difference between both groups at electrophysiological and morphological evaluation. Although, nowadays, nerve regeneration materials being marketed mostly have a tubular structure, our results suggest that the tubular structure is not indispensable for peripheral nerve regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. IDE, Neurosci. Res. 25 (1996) 101.

    CAS  PubMed  Google Scholar 

  2. C. IDE, K. TOHYAMA, R. YOKOTA, T. NITATORI and S. ONODERA, Brain Res. 288 (1983) 61.

    Article  CAS  PubMed  Google Scholar 

  3. Y. SUZUKI, M. TANIHARA, A. K. KITAHARA, C. W. ZHAN and Y. YAMAWAKI, J. Jpn. Plast. Reconstr. Surg. 17 (1997) 279.

    Google Scholar 

  4. Y. SUZUKI, Y. NISHIMURA, M. TANIHARA, K. SUZUKI, T. NAKAMURA, Y. SHIMIZU, Y. YAMAWAKI and Y. KAKIMARU, J. Biomed. Mater. Res. 39 (1998) 317.

    Article  CAS  PubMed  Google Scholar 

  5. Y. SUZUKI, M. TANIHARA, K. OHNISHI, K. SUZUKI, K. ENDO and Y. NISHIMURA, Neurosci. Lett. 259 (1999) 75.

    Article  CAS  PubMed  Google Scholar 

  6. T. HASHIMOTO, Y. SUZUKI, M. KITADA, K. KATAOKA, S. WU, K. SUZUKI, K. ENDO, Y. NISHIMURA and C. IDE, Exp. Brain Res. 146 (2002) 356.

    Article  CAS  PubMed  Google Scholar 

  7. W. SUFAN, Y. SUZUKI, M. TANIHARA, K. OHNISHI, K. SUZUKI, K. ENDO and Y. NISHIMURA, J. Neurotrauma 18 (2001) 329.

    Article  CAS  PubMed  Google Scholar 

  8. K. SUZUKI, Y. SUZUKI, M. TANIHARA, K. OHNISHI, T. HASHIMOTO, K. ENDO and Y. NISHIMURA, J. Biomed. Mater. Res. 49 (2000) 528.

    Article  CAS  PubMed  Google Scholar 

  9. G. TERENGHI, J. Anat. 194 (1999) 1.

    Article  CAS  PubMed  Google Scholar 

  10. Y. SHIBUYA, A. MIZOGUCHI, M. TAKEICHI, K. SHIMADA and C. IDE, Neuroscience 67 (1995) 253.

    Article  CAS  PubMed  Google Scholar 

  11. V. GUéENARD, N. KLEITMAN, T. K. MORRISSEY, R. P. BUNGE and P. AEBISCHER, J. Neurosci. 12 (1992) 3310.

    CAS  PubMed  Google Scholar 

  12. D. H. KIM, S. E. CONNOLLY, D. G. KLINE, R. M. VOORHIES, A. SMITH, M. POWELL, T. YOES and J. K. DANILOFF, J. Neurosurg. 80 (1994) 254.

    CAS  PubMed  Google Scholar 

  13. S. WU, Y. SUZUKI, M. TANIHARA, K. OHNISHI, K. ENDO and Y. NISHIMURA, Scand. J. Plast. Reconstr. Surg. Hand Surg. 36 (2002) 135.

    Article  PubMed  Google Scholar 

  14. G. LUNDBORG, L. B. DAHLIN, N. KANIELSEN, R. H. GELBERMAN, F. M. LONGON, H. C. POWELL and S. VARON, Exp. Neurol. 76 (1982) 361.

    Article  CAS  PubMed  Google Scholar 

  15. P. AEBISCHER, V. GU≫ENARD and S. BRACE, J. Neurosci. 9 (1989) 3590.

    CAS  PubMed  Google Scholar 

  16. R. F. VALENTINI and P. AEBISCHER, in ”Robotics and Biological Systems: Towards a New Bionics?” (Springer Verlag, New York, 1993) p. 625.

    Google Scholar 

  17. R. F. VALENTINI, A. M. SABATINI, P. DARIO and P. AEBISCHER, Brain Res. 48 (1989) 300.

    Article  Google Scholar 

  18. D. L. ELLIS and I. V. YANNAS, Biomaterials 17 (1996) 291.

    Article  CAS  PubMed  Google Scholar 

  19. X. J. TONG, K.-I. HIRAI, H. SHIMADA, Y. MIZUTANI, T. IZUMI, N. TODA and P. YU, Brain Res. 663 (1994) 155.

    Article  CAS  PubMed  Google Scholar 

  20. S. E. MACKINNON and A. L. DELLON, Plast. Reconstr. Surg. 85 (1990) 419.

    CAS  PubMed  Google Scholar 

  21. T. KIYOTANI, M. TERAMACHI, Y. TAKIMOTO, T. NAKAMURA, Y. SHIMIZU and K. ENDO, Brain Res. 740 (1996) 66.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihisa Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, T., Suzuki, Y., Suzuki, K. et al. Review Peripheral nerve regeneration using non-tubular alginate gel crosslinked with covalent bonds. J Mater Sci: Mater Med 16, 503–509 (2005). https://doi.org/10.1007/s10856-005-0524-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-005-0524-1

Keywords

Navigation