Skip to main content
Log in

N–self–doped hierarchically porous carbon materials from waste coffee grounds for symmetric supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The practical application of hierarchical porous carbon materials in supercapacitors is very important. Therefore, the development of a high–performance hierarchical porous carbon material is a huge challenge. The waste coffee grounds–based porous carbon (WBC) was synthesized from waste coffee grounds by carbonization and static air activation. The physicochemical properties of WBC were observed by scanning electron microscopy with energy dispersive X–ray spectroscopy, X–ray diffraction, Raman spectroscopy, X–ray photoelectron spectroscopy, and N2 adsorption–desorption analysis. The WBC activated at 800 ℃ has a more developed hierarchical porous structure with a specific surface area of 639.01 m2 g–1, and an average pore diameter of 2.77 nm. The formation mechanism of the WBC, which has a hierarchical porous structure in static air activation, was illustrated systematically. Within the three–electrode system, the optimal WBC exhibits the highest specific capacitance of 164.4 F g–1 at 0.5 A g–1 in 6 M KOH and an excellent rate capability of 84.85% at 5 A g–1. The constructed symmetric SC with the optimal WBC as electrode material and 6 M KOH as electrolyte achieved an energy density of 8.15 Wh kg–1 at a power density of 250 W kg–1 and an outstanding cyclic retention rate of 100% over 7000 cycles at 10 A g–1. The hierarchical porous structure of WBC exhibits high specific capacitance, high energy density, and stable cyclic retention rate, which provides a broad application prospect for realizing energy storage and conversion applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author (B. Xu) upon reasonable request.

References

  1. M.V. Reddy, G.V.S. Rao, B.V.R. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013). https://doi.org/10.1021/cr3001884

    Article  CAS  PubMed  Google Scholar 

  2. C.T. Zhou, S. Bag, V. Thangadurai, Engineering materials for progressive all-solid-state Na batteries. ACS Energy Lett. 3, 2181–2198 (2018). https://doi.org/10.1021/ACSENERGYLETT.8B00948

    Article  CAS  Google Scholar 

  3. M.A.A.H. Allah, H.A. Alshamsi, Green synthesis of AC/ZnO nanocomposites for adsorptive removal of organic dyes from aqueous solution. Inorg. Chem. Commun. 157, 111415 (2023). https://doi.org/10.1016/j.inoche.2023.111415

    Article  CAS  Google Scholar 

  4. M. Sajjad, M. Amin, M.S. Javed, M. Imran, W.K. Hu, Z.Y. Mao, W. Lu, Recent trends in transition metal diselenides (XSe2: X = Ni, Mn, Co) and their composites for high energy faradic supercapacitors. J. Energy Storage 43, 103176 (2021). https://doi.org/10.1016/j.est.2021.103176

    Article  Google Scholar 

  5. M. Sajjad, J. Zhang, S.W. Zhang, J.Q. Zhou, Z.W. Chen, Z.Y. Mao, Long–life lead–carbon batteries for stationary energy storage applications. Chem. Rec. 24, 315 (2023). https://doi.org/10.1002/tcr.202300315

    Article  CAS  Google Scholar 

  6. H.A. Khayoon, M. Ismael, A. Al-nayili, H.A. Alshamsi, Fabrication of LaFeO3–nitrogen deficient g-C3N4 composite for enhanced the photocatalytic degradation of RhB under sunlight irradiation. Inorg. Chem. Commun. 157, 111356 (2023). https://doi.org/10.1016/j.inoche.2023.111356

    Article  CAS  Google Scholar 

  7. AAl.H.A.H.A.N.M. –nayiliKhayoonAlshamsiCataSaady, A novel bimetallic (Au–Pd)-decorated reduced graphene oxide nanocomposite enhanced rhodamine B photocatalytic degradation under solar irradiation. Mater. Today Sustain. 24, 100512 (2023). https://doi.org/10.1016/j.mtsust.2023.100512

    Article  Google Scholar 

  8. M. Sajjad, M.I. Khan, F. Cheng, W. Lu, A review on selection criteria of aqueous electrolytes performance evaluation for advanced asymmetric supercapacitors. J. Energy Storage 40, 102729 (2021). https://doi.org/10.1016/j.est.2021.102729

    Article  Google Scholar 

  9. M. Sajjad, Y.H. Jiang, L.L. Guan, X. Chen, A. Iqbal, S.Y. Zhang, Y. Ren, X.W. Zhou, Z. Liu, NiCo2S4 nanosheets grafted SiO2@C core–shelled spheres as a novel electrode for high performance supercapacitors. Nanotechnology 31, 045403 (2019). https://doi.org/10.1088/1361-6528/ab4d0a

    Article  CAS  PubMed  Google Scholar 

  10. L. Fatolahi, T.S. Addulrahman, S. Alemi, M.N. Al-Delfi, A.H. Athab, B.J. Janani, Optical detection of fat and adulterants concentration milk using TMDC (WS2 and MoS2)–surface plasmon resonance sensor via high sensitivity and detection accuracy. Opt. Mater. 147, 114723 (2024). https://doi.org/10.1016/j.optmat.2023.114723

    Article  CAS  Google Scholar 

  11. H.T. Lin, C.A. Yang, L. Fatolahi, B.J. Janani, M. Sillanpää, Defect evolution on the activity of samarium doped Na2TinO2n+1 with different sodium/titanium ratio for photocatalytic degradation of fluoroquinolones drugs, toxicity assessments and eco-toxicity prediction. Ceram. Int. 50, 11939–11948 (2024). https://doi.org/10.1016/j.ceramint.2024.01.097

    Article  CAS  Google Scholar 

  12. T.H. Liou, Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chem. Eng. J. 158, 129–142 (2010). https://doi.org/10.1016/j.cej.2009.12.016

    Article  CAS  Google Scholar 

  13. S. Vaquero, R. Díaz, M. Anderson, J. Palma, R. Marcilla, Insights into the influence of pore size distribution and surface functionalities in the behaviour of carbon supercapacitors. Electrochim. Acta 86, 241–247 (2012). https://doi.org/10.1016/j.electacta.2012.08.006

    Article  CAS  Google Scholar 

  14. R. Genc, M.Q. Alas, E. Harputlu, S. Reep, N. Kremer, M. Castellano, S.G. Colak, K. Ocakoglu, E. Erdem, High-capacitance hybrid supercapacitor based on multi-colored fluorescent carbon-dots. Sci. Rep. 7, 11222 (2017). https://doi.org/10.1038/s41598-017-11347-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. S. Repp, E. Harputlu, S. Gurgen, M. Castellano, N. Kremer, N. Pompe, J. Wörner, A. Hoffmann, R. Thomann, F.M. Emen, S. Weber, K. Ocakoglu, E. Erdem, Synergetic effects of Fe3+doped spinel Li4Ti5O12 nanoparticles on reduced graphene oxide for high surface electrode hybrid supercapacitors. Nanoscale 10, 1877–1884 (2018). https://doi.org/10.1039/c7nr08190a

    Article  CAS  PubMed  Google Scholar 

  16. Y. Liu, L.N. Zong, C.X. Zhang, W.J. Liu, A. Fakhri, V.K. Gupta, Design and structural of Sm-doped SbFeO3 nanopowders and immobilized on poly(ethylene oxide) for efficient photocatalysis and hydrogen generation under visible light irradiation. Surf. Interfaces 26, 101292 (2021). https://doi.org/10.1016/j.surfin.2021.101292

    Article  CAS  Google Scholar 

  17. M. Ebrahimi, H. Hosseini-Monfared, M. Javanbakht, F. Mahdi, Biomass–derived nanostructured carbon materials for high-performance supercapacitor electrodes. Biomass Convers. Biorefin. (2023). https://doi.org/10.1007/s13399-022-03733-1

    Article  Google Scholar 

  18. D. Navaneethan, S.K. Krishna, Physicochemical synthesis of activated carbon from Canna indica (biowaste) for high-performance supercapacitor application. Res. Chem. Intermed. 49, 1387–1403 (2023). https://doi.org/10.1007/s11164-023-04955-2

    Article  CAS  Google Scholar 

  19. T. Sangprasert, V. Sattayarut, C. Rajrujithong, P. Khanchaitit, P. Khemthong, C. Chanthad, N. Grisdanurak, Making use of the inherent nitrogen content of spent coffee grounds to create nanostructured activated carbon for supercapacitor and lithium–ion battery applications. Diam. Relat. Mater. 127, 109164 (2022). https://doi.org/10.1016/j.diamond.2022.109164

    Article  CAS  Google Scholar 

  20. Y.H. Chiu, L.Y. Lin, Effect of activating agents for producing activated carbon using a facile one-step synthesis with waste coffee grounds for symmetric supercapacitors. J. Taiwan Inst. Chem. Eng. 101, 177–185 (2019). https://doi.org/10.1016/j.jtice.2019.04.050

    Article  CAS  Google Scholar 

  21. S.K. Ramasahayam, A.L. Clark, Z. Hicks, T. Viswanathan, Spent coffee grounds derived P N co-doped C as electrocatalyst for supercapacitor applications. Electrochim. Acta 168, 414–422 (2015). https://doi.org/10.1016/j.electacta.2015.03.193

    Article  CAS  Google Scholar 

  22. J. Wang, J.Y. Sun, J. Huang, A. Fakhri, V.K. Gupta, Synthesis and its characterization of silver sulfide/nickel titanate/chitosan nanocomposites for photocatalysis and water splitting under visible light, and antibacterial studies. Mater. Chem. Phys. 272, 124990 (2021). https://doi.org/10.1016/j.matchemphys.2021.12499

    Article  CAS  Google Scholar 

  23. Z.H. Bi, Q.Q. Kong, Y.F. Cao, G.H. Sun, F.Y. Su, X.X. Wei, X.M. Li, A. Ahmad, L.J. Xie, C.M. Chen, Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J. Mater. Chem. A 7, 16028–16045 (2019). https://doi.org/10.1039/C9TA04436A

    Article  CAS  Google Scholar 

  24. Y.S. Yun, M.H. Park, S.J. Hong, M.E. Lee, Y.W. Park, H.J. Jin, Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors. ACS Appl. Mater. Interfaces 7, 3684–3690 (2015). https://doi.org/10.1021/am5081919

    Article  CAS  PubMed  Google Scholar 

  25. Y.T. Luan, L. Wang, S.E. Guo, B.J. Jiang, D.D. Zhao, H.J. Yan, C.G. Tian, H.G. Fu, A hierarchical porous carbon material from a loofah sponge network for high performance supercapacitors. RSC Adv. 5, 42430–42437 (2015). https://doi.org/10.1039/c5ra05688h

    Article  CAS  Google Scholar 

  26. P. Guillemet, Y. Scudeller, T. Brousse, Multi-level reduced-order thermal modeling of electrochemical capacitors. J. Power. Sources 157, 630–640 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.072

    Article  CAS  Google Scholar 

  27. C.H. Wang, W.C. Wen, H.C. Hsu, B.Y. Yao, High-capacitance KOH-activated nitrogen-containing porous carbon material from waste coffee grounds in supercapacitor. Adv. Powder Technol. 27, 1387–1395 (2016). https://doi.org/10.1016/j.apt.2016.04.033

    Article  CAS  Google Scholar 

  28. E.DHd.J. Ángel-MerazOrantes-Flores, E.R. Morales, P.Y. Sevilla-Camacho, R. Castillo-Palomera, The use of activated carbon from coffee endocarp for the manufacture of supercapacitors. J. Mater. Sci. Mater. Electron. 31, 7547–7554 (2020). https://doi.org/10.1007/s10854-020-03123-1

    Article  CAS  Google Scholar 

  29. M. Biegun, A. Dymerska, X.C. Chen, E. Mijowska, Study of the active carbon from used coffee grounds as the active material for a high-temperature stable supercapacitor with ionic-liquid electrolyte. Materials 13, 3919 (2020). https://doi.org/10.3390/ma13183919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. M. Sajjad, Y. Khan, W. Lu, One-pot synthesis of 2D SnS2 nanorods with high energy density and long term stability for high-performance hybrid supercapacitor. J. Energy Storage 35, 102336 (2021). https://doi.org/10.1016/j.est.2021.102336

    Article  Google Scholar 

  31. O. Fasakin, J.K. Dangbegnon, D.Y. Momodu, M.J. Madito, K.O. Oyedotun, M.A. Eleruja, N. Manyala, Synthesis and characterization of porous carbon derived from activated banana peels with hierarchical porosity for improved electrochemical performance. Electrochim. Acta 262, 187–196 (2018). https://doi.org/10.1016/j.electacta.2018.01.028

    Article  CAS  Google Scholar 

  32. C.C. Su, C.J. Pei, B.X. Wu, J.F. Qian, Y.W. Tan, Highly doped carbon nanobelts with ultrahigh nitrogen content as high-performance supercapacitor materials. Small 13, 1700834 (2017). https://doi.org/10.1002/smll.201700834

    Article  CAS  Google Scholar 

  33. W.H. He, L.H. Lu, Revisiting the structure of graphene oxide for preparing new-style grapheme-based ultraviolet absorbers. Adv. Funct. Mater. 22, 2542–2549 (2012). https://doi.org/10.1002/adfm.201102998

    Article  CAS  Google Scholar 

  34. P.S. Yang, L. Ma, M.Y. Gan, Y. Lei, X.L. Zhang, M. Jin, G. Fu, Preparation and application of PANI/N-doped porous carbon under the protection of ZnO for supercapacitor electrode. J. Mater. Sci. Mater. Electron. 28, 7333–7342 (2017). https://doi.org/10.1007/s10854-017-6420-x

    Article  CAS  Google Scholar 

  35. Y. Kawashima, G. Katagiri, Fundamentals, overtones, and combinations in the Raman spectrum of graphite. Phys. Rev. B 52, 10053 (1995). https://doi.org/10.1103/physrevb.52.10053

    Article  CAS  Google Scholar 

  36. M.A.A. –Ghouti, D.A. Da’ana, Guidelines for the use and interpretation of adsorption isotherm models: a review. J. Hazard. Mater. 393, 122383 (2020). https://doi.org/10.1016/j.jhazmat.2020.122383

    Article  CAS  PubMed  Google Scholar 

  37. X.F. Chen, J.Y. Zhang, B. Zhang, S.M. Dong, X.C. Guo, X.D. Mu, B.H. Fei, A novel hierarchical porous nitrogen-doped carbon derived from bamboo shoot for high performance supercapacitor. Sci. Rep. 7, 7362 (2017). https://doi.org/10.1038/s41598-017-06730-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. V.N. Kitenge, D.J. Tarimo, K.O. Oyedotun, G. Rutavi, N. Manyala, Facile and sustainable technique to produce low-cost high surface area mangosteen shell activated carbon for supercapacitors applications. J. Energy Storage 56, 105876 (2022). https://doi.org/10.1016/j.est.2022.105876

    Article  Google Scholar 

  39. Y.Y. Li, Z.S. Li, P.K. Shen, Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene–like networks for fast and highly stable supercapacitors. Adv. Mater. 25, 2474–2480 (2013). https://doi.org/10.1002/adma.201205332

    Article  CAS  PubMed  Google Scholar 

  40. G.Y. Zhao, C. Chen, D.F. Yu, L. Sun, C.H. Yang, H. Zhang, Y. Sun, F. Besenbacher, M. Yu, One-step production of O-N–S co-doped three–dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 47, 547–555 (2018). https://doi.org/10.1016/j.nanoen.2018.03.016

    Article  CAS  Google Scholar 

  41. W.J. Si, J. Zhou, S.M. Zhang, S.J. Li, W. Xing, S.P. Zhuo, Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications. Electrochim. Acta 107, 397–405 (2013). https://doi.org/10.1016/j.electacta.2013.06.065

    Article  CAS  Google Scholar 

  42. L.J. Hou, Z.A. Hu, X.T. Wang, L.L. Qiang, Y. Zhou, L.W. Lv, S.S. Li, Hierarchically porous and heteroatom self-doped graphitic biomass carbon for supercapacitors. J. Colloid Interface Sci. 540, 88–96 (2019). https://doi.org/10.1016/j.jcis.2018.12.029

    Article  CAS  PubMed  Google Scholar 

  43. Y.Q. Zhao, M. Lu, P.Y. Tao, Y.J. Zhang, X.T. Gong, Z. Yang, G.Q. Zhang, H.L. Li, Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. J. Power. Sources 307, 391–400 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.020

    Article  CAS  Google Scholar 

  44. Z.H. Sheng, L. Shao, J.J. Chen, W.J. Bao, F.B. Wang, X.H. Xia, Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5, 4350–4358 (2011). https://doi.org/10.1021/nn103584t

    Article  CAS  PubMed  Google Scholar 

  45. Z.X. Guo, X.S. Han, C.M. Zhang, S.J. He, K.M. Liu, J.P. Hu, W.S. Yang, S.J. Jian, S.H. Jiang, G.G. Duan, Activation of biomass-derived porous carbon for supercapacitors: a review. Chin. Chem. Lett. (2023). https://doi.org/10.1016/j.cclet.2023.109007

    Article  PubMed  PubMed Central  Google Scholar 

  46. F.X. Wang, X.W. Wu, X.H. Yuan, Z.C. Liu, Y. Zhang, L.J. Fu, Y.S. Zhu, Q.M. Zhou, Y.P. Wu, W. Huang, Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem. Soc. Rev. 46, 6816–6854 (2017). https://doi.org/10.1039/c7cs00205j

    Article  CAS  PubMed  Google Scholar 

  47. M. Sajjad, W. Lu, Regulating high specific capacitance NCS/α–MnO2 cathode and a wide potential window α-Fe2O3/rGO anode for the construction of 2.7 V for high performance aqueous asymmetric supercapacitors. J. Energy Storage 44, 103343 (2021). https://doi.org/10.1016/j.est.2021.103343

    Article  Google Scholar 

  48. J. Wu, M.W. Xia, X. Zhang, Y.Q. Chen, F. Sun, X.H. Wang, H.P. Yang, H.P. Chen, Hierarchical porous carbon derived from wood tar using crab as the template: performance on supercapacitor. J. Power. Sources 455, 227982 (2020). https://doi.org/10.1016/j.jpowsour.2020.227982

    Article  CAS  Google Scholar 

  49. C. Lu, Y.H. Huang, Y.J. Wu, J. Li, J.P. Cheng, Camellia pollen-derived carbon for supercapacitor electrode material. J. Power. Sources 394, 227982 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.032

    Article  CAS  Google Scholar 

  50. W.C. Jiang, J.Q. Cai, J.Q. Pan, S.C. Guo, Y.Z. Sun, L.Y. Li, X.G. Liu, Nitrogen-doped hierarchically ellipsoidal porous carbon derived from Al-based metal-organic framework with enhanced specific capacitance and rate capability for high performance supercapacitors. J. Power. Sources 432, 102–111 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.079

    Article  CAS  Google Scholar 

  51. M. Sajjad, J. Ismail, A. Shah, A. Mahmood, M.Z.U. Shah, S. Rahman, W. Lu, Fabrication of 1.6V hybrid supercapacitor developed using MnSe2/rGO positive electrode and phosphine based covalent organic frameworks as a negative electrode enables superb stability up to 28,000 cycles. J. Energy Storage 44, 103318 (2021). https://doi.org/10.1016/j.est.2021.103318

    Article  Google Scholar 

  52. M. Sajjad, R. Tao, K. Kang, S.C. Luo, L. Qiu, Phosphine-based porous organic polymer/rGO aerogel composites for high-performance asymmetric supercapacitor. ACS Appl. Energy Mater. 4, 828–838 (2021). https://doi.org/10.1021/acsaem.0c02725

    Article  CAS  Google Scholar 

  53. G.N. Wang, M.J. Guan, R. Fu, C. Yong, Y. Zhu, L.C. Pan, Fermentation-hot pressing assisted preparation of bamboo green-activated carbon for supercapacitors. Diam. Relat. Mater. 143, 11087 (2024). https://doi.org/10.1016/j.diamond.2024.110871

    Article  CAS  Google Scholar 

  54. Y. Li, B. Qi, Secondary utilization of jujube shell bio–waste into biomass carbon for supercapacitor electrode materials study. Electrochem. Commun. 152, 107512 (2023). https://doi.org/10.1016/j.elecom.2023.107512

    Article  CAS  Google Scholar 

  55. T.A. Hansu, F. Hansu, M. Akdemir, Investigation of a new supercapacitor electrode material from prunus spinosa biomass. Waste Biomass Valoriz. 14, 3265–3274 (2023). https://doi.org/10.1007/s12649-023-02059-x

    Article  CAS  Google Scholar 

  56. H. Chen, Y. Zheng, X.Q. Zhu, W.L. Hong, Y.F. Tong, Y.Z. Lu, G. Pei, Y.J. Pang, Z.H. Shen, C. Guan, Bamboo-derived porous carbons for Zn-ion hybrid supercapacitors. Mater. Res. Bull. 139, 111281 (2021). https://doi.org/10.1016/j.materresbull.2021.111281

    Article  CAS  Google Scholar 

  57. D.A. Khuong, H.N. Nguyena, T. Tsubota, CO2 activation of bamboo residue after hydrothermal treatment and performance as an EDLC electrode. RSC Adv. 11, 9682–9692 (2021). https://doi.org/10.1039/D1RA00124H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. L.M. Cai, Y.Z. Zhang, R. Ma, X. Feng, L.H. Yan, D.Z. Jia, M.J. Xu, L.L. Ai, N. Guo, L.X. Wang, Nitrogen-doped hierarchical porous carbon derived from coal for high-performance supercapacitor. Molecules 28, 3660 (2023). https://doi.org/10.3390/molecules28093660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. D. Shrestha, A. Rajbhandari, The effects of different activating agents on the physical and electrochemical properties of activated carbon electrodes fabricated from wood–dust of Shorea robusta. Heliyon 7, e07917 (2021). https://doi.org/10.1016/j.heliyon.2021.e07917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. S. Pérez-Rodríguez, O. Pinto, M. Izquierdo, C. Segura, P. Poon, A. Celzard, J. Matos, V. Fierro, Upgrading of pine tannin biochars as electrochemical capacitor electrodes. J. Colloid Interface Sci. 601, 863–876 (2021). https://doi.org/10.1016/j.jcis.2021.05.162

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Fanen Zeng: Investigation, Formal analysis, Writing–original draft. Zhen Tan: Visualization, Formal analysis. Xun Yang: Investigation. Xiamei Wang: Resources. Bing Xu: Funding acquisition, Writing–review & editing.

Corresponding author

Correspondence to Bing Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, F., Tan, Z., Yang, X. et al. N–self–doped hierarchically porous carbon materials from waste coffee grounds for symmetric supercapacitor. J Mater Sci: Mater Electron 35, 885 (2024). https://doi.org/10.1007/s10854-024-12643-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12643-z

Navigation