Skip to main content
Log in

Investigating the effect of MoS2–SnS2 heterojunction to enhance the decomposition of organic pollutants under visible light irradiation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the MoS2–SnS2 heterojunctions were prepared by a hydrothermal and studied their basic properties. The prepared catalyst’s crystal structure, chemical composition, optical properties and morphological analysis were analyzed through XRD, XPS, SEM, TEM, UV–Vis DRS and PL analysis. The photocatalytic performance of the synthesized catalyst was assessed with Methylene Blue (MB). The MoS2–SnS2 heterojunctions exhibited superior photocatalytic efficacy, achieving an efficiency of 96.7%, outperforming both MoS2 (82.7%) and SnS2 (43.8%). Moreover, the MoS2–SnS2 heterojunction displayed the highest photodegradation efficiency (expressed as Kapp) with a rate constant of 0.0344, in contrast to MoS2 (0.0185) and SnS2 (0.0060). The enhancement can be ascribed to a synergistic impact that substantially diminishes the recombination of electrons and holes generated by light, simultaneously enhancing the absorption of visible light. Further, the stability of MoS2–SnS2 heterojunction catalysts was performed by five consequent cycles, where MoS2–SnS2 heterojunction shows excellent stability after five cycles. Then, the possible MoS2–SnS2 heterojunction photocatalytic reaction mechanism was explained based on the catalytic experimental results. The current study was demonstrated that the MoS2–SnS2 heterojunction promising material for future photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All obtained data during this work are included in this manuscript.

References

  1. R. Ranjith, N. Karmegam, M. Alsawalha, H. Xuefeng, K. Jothimani, Construction of g-C3N4/CdS/BiVO4 ternary nanocomposite with enhanced visible-light-driven photocatalytic activity toward methylene blue dye degradation in the aqueous phase. J. Environ. Manag. 330, 117132 (2023). https://doi.org/10.1016/j.jenvman.2022.117132

    Article  CAS  Google Scholar 

  2. U.P.S. Prabhakar, P. Shanmugam, S. Boonyuen, L.P. Chandrasekar, R. Pothu, R. Boddula, N. Al-Qahtani, Non-covalent functionalization of surfactant-assisted graphene oxide with silver nanocomposites for highly efficient photocatalysis and anti-biofilm applications. Mater. Sci. Energy Technol. 7, 205–215 (2024). https://doi.org/10.1016/j.mset.2023.10.00

    Article  CAS  Google Scholar 

  3. K. Mehala, N. Karmegam, T. Kavitha, P. Senthilkumar, D. Barathi, A. Priyadharsan, R. Ranjith, Enhanced visible light photocatalytic degradation of methylene blue dye using efficient Mg/S co-doped TiO2 nanoparticles. Biomass Convers. Biorefin. (2023). https://doi.org/10.1007/s13399-023-04278-7

    Article  Google Scholar 

  4. S. Shahabuddin, S. Mehmood, I. Ahmad, N. Sridewi, Synthesis and characterization of 2D-WS2 incorporated polyaniline nanocomposites as photo catalyst for methylene blue degradation. Nanomaterials 12, 2090 (2022). https://doi.org/10.3390/nano12122090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. J. Lu, H. Hu, S. Yang, P. Shanmugam, W. Wei, M. Selvaraj, J. Xie, ZnS@ carbonaceous aerogel composites fabricated in production of hydrogen and for removal of organic pollutants. J. Mater. Sci. Mater. Electron. 29, 8523–8534 (2018). https://doi.org/10.1007/s10854-018-8866-x

    Article  CAS  Google Scholar 

  6. H. Li, B. Sun, T. Gao, H. Li, Y. Ren, G. Zhou, Ti3C2 MXene co-catalyst assembled with mesoporous TiO2 for boosting photocatalytic activity of methyl orange degradation and hydrogen production. Chin. J. Catal. 43, 461–471 (2022). https://doi.org/10.1016/S1872-2067(21)63915-3

    Article  CAS  Google Scholar 

  7. S. Zhao, C. Chen, J. Ding, S. Yang, Y. Zang, N. Ren, One-pot hydrothermal fabrication of BiVO4/Fe3O4/rGO composite photocatalyst for the simulated solar light-driven degradation of rhodamine B. Front. Environ. Sci. Eng. (2022). https://doi.org/10.1007/s11783-021-1470-y

    Article  PubMed  Google Scholar 

  8. S. Selvi, R. Ranjith, D. Barathi, N. Jayamani, Facile synthesis of CeO2/CoWO4 hybrid nanocomposites for high photocatalytic performance and investigation of antimicrobial activity. J. Electron. Mater. 50, 2890–2902 (2021). https://doi.org/10.1007/s11664-020-08729-z

    Article  CAS  Google Scholar 

  9. M. Zhang, X. Sun, C. Wang, Y. Wang, Z. Tan, J. Li, B. Xi, Photocatalytic degradation of rhodamine B using Bi4O5Br2-doped ZSM-5. Mater. Chem. Phys. 278, 125697 (2022). https://doi.org/10.1016/j.matchemphys.2022.125697

    Article  CAS  Google Scholar 

  10. A. Ogunlaja, I.N. Nwankwo, M.E. Omaliko, O.D. Olukanni, Biodegradation of methylene blue as an evidence of synthetic dyes mineralization during textile effluent biotreatment by Acinetobacter pittii. Environ. Process. 7, 931–947 (2020). https://doi.org/10.1007/s40710-020-00443-6

    Article  CAS  Google Scholar 

  11. A. Khan, A. Roy, S. Bhasin, T. Bin Emran, A. Khusro, A. Eftekhari, O. Moradi, H. Rokni, F. Karimi, Nanomaterials: an alternative source for biodegradation of toxic dyes. Food Chem. Toxicol. 164, 112996 (2022). https://doi.org/10.1016/j.fct.2022.112996

    Article  CAS  PubMed  Google Scholar 

  12. K. Mehala, G. Sivarasan, A.A. Hatamleh, B.K. Alnafisi, R. Ranjith, C. Ragavendran, A. Priyadharsan, D. Barathi, L. Huang-Mu, Enhancement in the visible light induced photocatalytic and antibacterial properties of titanium dioxide codoped with cobalt and sulfur. Environ. Res. 216, 114705 (2023). https://doi.org/10.1016/j.envres.2022.114705

    Article  CAS  Google Scholar 

  13. J. Li, H. Wang, X. Yuan, J. Zhang, J.W. Chew, Metal-organic framework membranes for wastewater treatment and water regeneration. Coord. Chem. Rev. 404, 213116 (2020). https://doi.org/10.1016/j.ccr.2019.213116

    Article  CAS  Google Scholar 

  14. E. Kavitha, E. Poonguzhali, D. Nanditha, A. Kapoor, G. Arthanareeswaran, S. Prabhakar, Current status and future prospects of membrane separation processes for value recovery from wastewater. Chemosphere 291, 132690 (2022). https://doi.org/10.1016/j.chemosphere.2021.132690

    Article  CAS  PubMed  Google Scholar 

  15. M. Abd Elkodous, G.S. El-Sayyad, M.I.A. Abdel Maksoud, R. Kumar, K. Maegawa, G. Kawamura, W.K. Tan, A. Matsuda, Nanocomposite matrix conjugated with carbon nanomaterials for photocatalytic wastewater treatment. J. Hazard. Mater. 410, 124657 (2021). https://doi.org/10.1016/j.jhazmat.2020.124657

    Article  CAS  PubMed  Google Scholar 

  16. Sonu, V. Dutta, S. Sharma, P. Raizada, A. Hosseini-Bandegharaei, V. Kumar Gupta, P. Singh, Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water. J. Saudi Chem. Soc. 23, 1119–1136 (2019). https://doi.org/10.1016/j.jscs.2019.07.003

    Article  CAS  Google Scholar 

  17. M. Ge, Z. Hu, J. Wei, Q. He, Z. He, Recent advances in persulfate-assisted TiO2-based photocatalysis for wastewater treatment: performances, mechanism and perspectives. J. Alloys Compd. 888, 161625 (2021). https://doi.org/10.1016/j.jallcom.2021.161625

    Article  CAS  Google Scholar 

  18. H. Xiao, P. Liu, W. Wang, R. Ran, W. Zhou, Z. Shao, Ruddlesden-Popper perovskite oxides for photocatalysis-based water splitting and wastewater treatment. Energy Fuels 34, 9208–9221 (2020). https://doi.org/10.1021/acs.energyfuels.0c02301

    Article  CAS  Google Scholar 

  19. S.N. Ahmed, W. Haider, Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology (2018). https://doi.org/10.1088/1361-6528/aac6ea

    Article  PubMed  Google Scholar 

  20. K.A. Isai, V.S. Shrivastava, Photocatalytic degradation of methylene blue using ZnO and 2%Fe–ZnO semiconductor nanomaterials synthesized by sol–gel method: a comparative study. SN Appl. Sci. 1, 1–11 (2019). https://doi.org/10.1007/s42452-019-1279-5

    Article  CAS  Google Scholar 

  21. F. Azeez, E. Al-Hetlani, M. Arafa, Y. Abdelmonem, A.A. Nazeer, M.O. Amin, M. Madkour, The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-25673-5

    Article  PubMed  PubMed Central  Google Scholar 

  22. M. Moztahida, D.S. Lee, Photocatalytic degradation of methylene blue with P25/graphene/polyacrylamide hydrogels: optimization using response surface methodology. J. Hazard. Mater. 400, 123314 (2020). https://doi.org/10.1016/j.jhazmat.2020.123314

    Article  CAS  PubMed  Google Scholar 

  23. M. Liao, L. Su, Y. Deng, S. Xiong, R. Tang, Z. Wu, C. Ding, L. Yang, D. Gong, Strategies to improve WO3-based photocatalysts for wastewater treatment: a review. J. Mater. Sci. 56, 14416–14447 (2021). https://doi.org/10.1007/s10853-021-06202-8

    Article  CAS  Google Scholar 

  24. W. Chen, Z.C. He, G.B. Huang, C.L. Wu, W.F. Chen, X.H. Liu, Direct Z-scheme 2D/2D MnIn2S4/g-C3N4 architectures with highly efficient photocatalytic activities towards treatment of pharmaceutical wastewater and hydrogen evolution. Chem. Eng. J. 359, 244–253 (2019). https://doi.org/10.1016/j.cej.2018.11.141

    Article  CAS  Google Scholar 

  25. S. Kavitha, R. Ranjith, N. Jayamani, S. Vignesh, P. Baskaran, R. Djellabi, C.L. Bianchi, F.A. Alharthi, Fabrication of visible-light-responsive TiO2/α-Fe2O3-heterostructured composite for rapid photo-oxidation of organic pollutants in water. J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-021-06971-7

    Article  Google Scholar 

  26. R. Mimouni, B. Askri, T. Larbi, M. Amlouk, A. Meftah, Photocatalytic degradation and photo-generated hydrophilicity of methylene blue over ZnO/ZnCr2O4 nanocomposite under stimulated UV light irradiation. Inorg. Chem. Commun. 115, 107889 (2020). https://doi.org/10.1007/s10854-021-06971-7

    Article  CAS  Google Scholar 

  27. E. Prabakaran, K. Pillay, Synthesis of N-doped ZnO nanoparticles with cabbage morphology as a catalyst for the efficient photocatalytic degradation of methylene blue under UV and visible light. RSC Adv. 9, 7509–7535 (2019). https://doi.org/10.1039/C8RA09962F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. H. Maleki, V. Bertola, TiO2 nanofilms on polymeric substrates for the photocatalytic degradation of methylene blue. ACS Appl. Nano Mater. 2, 7237–7244 (2019). https://doi.org/10.1021/acsanm.9b01723

    Article  CAS  Google Scholar 

  29. A. Chinnathambi, S. Vasantharaj, M. Saravanan, S. Sathiyavimal, P.A. Duc, O. Nasif, S.A. Alharbi, N.T.L. Chi, K. Brindhadevi, Biosynthesis of TiO2 nanoparticles by Acalypha indica; photocatalytic degradation of methylene blue. Appl. Nanosci. (Switzerland) (2021). https://doi.org/10.1007/s13204-021-01761-3

    Article  Google Scholar 

  30. M. Shaban, A.M. Ahmed, N. Shehata, M.A. Betiha, A.M. Rabie, Ni-doped and Ni/Cr co-doped TiO2 nanotubes for enhancement of photocatalytic degradation of methylene blue. J. Colloid Interface Sci. 555, 31–41 (2019). https://doi.org/10.1016/j.jcis.2019.07.070

    Article  CAS  PubMed  Google Scholar 

  31. C.W. Huang, M.C. Wu, Photocatalytic degradation of methylene blue by UV-assistant TiO2 and natural sericite composites. J. Chem. Technol. Biotechnol. 95, 2715–2722 (2020). https://doi.org/10.1002/jctb.6392

    Article  CAS  Google Scholar 

  32. C. Wang, Y. Wu, L. Tsai, H. Lee, Visible light photocatalytic properties of one-step SnO2-templated grown SnO2/SnS2 heterostructure and SnS2 nanoflakes. Nanotechnology 32, 305706 (2021). https://doi.org/10.1088/1361-6528/abd8f6

    Article  CAS  Google Scholar 

  33. V. Putritama, V. Fauzia, A. Supangat, The effect of the layer number of MoS2 nanosheets on the photocatalytic efficiency of ZnO/MoS2. Surf. Interfaces (2020). https://doi.org/10.1016/j.surfin.2020.100745

    Article  Google Scholar 

  34. X. Ni, C. Chen, Q. Wang, Z. Li, One-step hydrothermal synthesis of SnO2-MoS2 composite heterostructure for improved visible light photocatalytic performance. Chem. Phys. 525, 110398 (2019). https://doi.org/10.1016/j.chemphys.2019.110398

    Article  CAS  Google Scholar 

  35. Q. Jiang, S. Wang, X. Li, Z. Han, C. Zhao, T. Di, S. Liu, Z. Cheng, Controllable growth of MoS2 nanosheets on TiO2 burst nanotubes and their photocatalytic activity. RSC Adv. 10, 40904–40915 (2020). https://doi.org/10.1039/d0ra08421b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. P.O. Agboola, I. Shakir, Facile fabrication of SnO2/MoS2/rGO ternary composite for solar light-mediated photocatalysis for water remediation. J. Market. Res. 18, 4303–4313 (2022). https://doi.org/10.1016/j.jmrt.2022.04.109

    Article  CAS  Google Scholar 

  37. A. Padmanaban, T. Dhanasekaran, S. Dhanavel, R. Manigandan, M.S. Pandian, P. Ramasamy, D. Balaganesh, Rational design of uniformly embedded Cu/CoTe nanoparticles in freestanding rGO sheets for visible light-induced degradation of toxic dyes. J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-021-07303-5

    Article  Google Scholar 

  38. A. Padmanaban, S. Bharathkumar, T. Dhanasekaran, R. Manigandan, M.S. Pandian, P. Ramasamy, H. Valdes, Investigation of photo-/electrocatalytic activity of hydrothermal synthesized novel copper ion-modulated bifunctional NiTe2 nanoflakes. Surf. Interfaces 32, 102124 (2022). https://doi.org/10.1016/j.surfin.2022.102124

    Article  CAS  Google Scholar 

  39. J.J.J.J. Kamaraj, A. Padmanaban, S. Perumal, S.P. Muthu, R. Perumalsamy, Design of cation (Mo) substituted transition metal dichalcogenide (NiSe2): NiMoSe2 electrode for high-performance asymmetric supercapacitors. J. Energy Storage 73, 109262 (2023). https://doi.org/10.1016/j.est.2023.109262

    Article  Google Scholar 

  40. A.S. Sindhu, N.B. Shinde, S. Harish, M. Navaneethan, S.K. Eswaran, Recoverable and reusable visible-light photocatalytic performance of CVD grown atomically thin MoS2 films. Chemosphere 287, 132347 (2022). https://doi.org/10.1016/j.chemosphere.2021.132347

    Article  CAS  PubMed  Google Scholar 

  41. L. Zou, R. Qu, H. Gao, X. Guan, X. Qi, C. Liu, Z. Zhang, X. Lei, MoS2/RGO hybrids prepared by a hydrothermal route as a highly efficient catalytic for sonocatalytic degradation of methylene blue. Results Phys. 14, 102458 (2019). https://doi.org/10.1016/j.rinp.2019.102458

    Article  Google Scholar 

  42. D. Monga, D. Ilager, N.P. Shetti, S. Basu, T.M. Aminabhavi, 2D/2D heterojunction of MoS2/g-C3N4 nanoflowers for enhanced visible-light-driven photocatalytic and electrochemical degradation of organic pollutants. J. Environ. Manag. 274, 111208 (2020). https://doi.org/10.1016/j.jenvman.2020.111208

    Article  CAS  Google Scholar 

  43. S. Kumar, V. Sharma, K. Bhattacharyya, V. Krishnan, Synergetic effect of MoS2-RGO doping to enhance the photocatalytic performance of ZnO nanoparticles. New J. Chem. 40, 5185–5197 (2016). https://doi.org/10.1039/c5nj03595c

    Article  CAS  Google Scholar 

  44. S. Asaithambi, P. Sakthivel, M. Karuppaiah, K. Balamurugan, R. Yuvakkumar, M. Thambidurai, G. Ravi, Synthesis and characterization of various transition metals doped SnO2@MoS2 composites for supercapacitor and photocatalytic applications. J. Alloys Compd. 853, 157060 (2021). https://doi.org/10.1016/j.jallcom.2020.157060

    Article  CAS  Google Scholar 

  45. N. Priyanga, A.S. Raja, M. Pannipara, A.G. Al-Sehemi, S.M. Phang, Y. Xia, S.Y. Tsai, J. Annaraj, S. Sambathkumar, G.G. Kumar, Hierarchical MnS@MoS2 architectures on tea bag filter paper for flexible, sensitive, and selective non-enzymatic hydrogen peroxide sensors. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2020.157103

    Article  Google Scholar 

  46. J. Gao, J. Hu, Y. Wang, L. Zheng, G. He, J. Deng, M. Liu, Y. Li, Y. Liu, H. Zhou, Fabrication of Z-scheme TiO2/SnS2/MoS2 ternary heterojunction arrays for enhanced photocatalytic and photoelectrochemical performance under visible light. J. Solid State Chem. (2022). https://doi.org/10.1016/j.jssc.2021.122737

    Article  Google Scholar 

  47. C. Yu-Cheng, L. Yu-Wen, MoS2@SnO2 core-shell sub-microspheres for high efficient visible-light photodegradation and photocatalytic hydrogen production. Mater. Res. Bull. (2020). https://doi.org/10.1016/j.materresbull.2020.110912

    Article  Google Scholar 

  48. X. Li, J. Zhang, Y. Huo, K. Dai, S. Li, S. Chen, Two-dimensional sulfur- and chlorine-co-doped g-C3N4/CdSe-amine heterostructures nanocomposite with effective interfacial charge transfer and mechanism insight. Appl. Catal. B 280, 119452–119461 (2021). https://doi.org/10.1016/j.apcatb.2020.119452

    Article  CAS  Google Scholar 

  49. J. Wang, Z. Wang, J. Zhang, S. Chai, K. Dai, J. Low, Surface active site modulation of the S-scheme heterojunction toward exceptional photocatalytic performance. Nanoscale 14, 18087–18093 (2022). https://doi.org/10.1039/D2NR05341A

    Article  CAS  PubMed  Google Scholar 

  50. T. Hu, K. Dai, J. Zhang, S. Chen, Noble-metal-free Ni2P modified step-scheme SnNb2O6/CdS diethylenetriamine for photocatalytic hydrogen production under broadband light irradiation. Appl. Catal. B 269, 118844–118856 (2020). https://doi.org/10.1016/j.apcatb.2020.118844

    Article  CAS  Google Scholar 

  51. X. Ke, J. Zhang, K. Dai, K. Fan, C. Liang, Integrated S-scheme heterojunction of amine-functionalized 1D CdSe nanorods anchoring on ultrathin 2D SnNb2O6 nanosheets for robust solar-driven CO2 conversion. Sol. RRL 5, 2000805–2000816 (2021). https://doi.org/10.1002/solr.202000805

    Article  CAS  Google Scholar 

  52. F. Deng, X. Lu, X. Pei, X. Luo, S. Luo, D.D. Dionysiou, Fabrication of ternary reduced graphene oxide/SnS2/ZnFe2O4 composite for high visible-light photocatalytic activity and stability. J. Hazard. Mater. 332, 149–161 (2017). https://doi.org/10.1016/j.jhazmat.2017.01.058

    Article  CAS  PubMed  Google Scholar 

  53. S. Arulkumar, S. Parthiban, A. Goswami, R.S. Varma, M. Naushad, M.B. Gawande, Low temperature processed titanium oxide thin-film using scalable wire-bar coating. Mater. Today: Proc. (2019). https://doi.org/10.1088/2053-1591/ab5eed

    Article  Google Scholar 

  54. X. Xiao, Y. Wang, X. Xu, T. Yang, D. Zhang, Preparation of the flower-like MoS2/SnS2 heterojunction as an efficient electrocatalyst for hydrogen evolution reaction. Mol. Catal. (2020). https://doi.org/10.1016/j.mcat.2020.110890

    Article  Google Scholar 

  55. T. Qiang, L. Chen, Y. Xia, X. Qin, Dual modified MoS2/SnS2 photocatalyst with Z-scheme heterojunction and vacancies defects to achieve a superior performance in Cr(VI) reduction and dyes degradation. J. Clean. Prod. 291, 125213 (2021). https://doi.org/10.1016/j.jclepro.2020.125213

    Article  CAS  Google Scholar 

  56. Z.X. Huang, Y. Wang, B. Liu, D. Kong, J. Zhang, T. Chen, H.Y. Yang, Unlocking the potential of SnS2: transition metal catalyzed utilization of reversible conversion and alloying reactions. Sci. Rep. 7, 1–11 (2017). https://doi.org/10.1038/srep41015

    Article  CAS  Google Scholar 

  57. A.B. Makama, A. Salmiaton, E.B. Saion, T.S.Y. Choong, N. Abdullah, Microwave-assisted synthesis of porous ZnO/SnS2 heterojunction and its enhanced photoactivity for water purification. J. Nanomater. (2015). https://doi.org/10.1155/2015/108297

    Article  Google Scholar 

  58. Y. Zhang, P. Ju, L. Hao, X. Zhai, F. Jiang, Novel Z-scheme MoS2/Bi2WO6 heterojunction with highly enhanced photocatalytic activity under visible light irradiation. J. Alloys Compd. 854, 157224 (2021). https://doi.org/10.1016/j.jallcom.2020.157224

    Article  CAS  Google Scholar 

  59. S. Yin, J. Li, L. Sun, X. Li, D. Shen, X. Song, P. Huo, H. Wang, Y. Yan, Construction of heterogenous S−C−S MoS2/SnS2/r-GO heterojunction for efficient CO2 photoreduction. Inorg. Chem. 58, 15590–15601 (2019). https://doi.org/10.1021/acs.inorgchem.9b02676

    Article  CAS  PubMed  Google Scholar 

  60. F. Hosseini, S. Mohebbi, High efficient photocatalytic reduction of aqueous Zn2+, Pb2+ and Cu2+ ions using modified titanium dioxide nanoparticles with amino acids. J. Ind. Eng. Chem. 85, 190–195 (2020). https://doi.org/10.1016/j.jiec.2020.01.040

    Article  CAS  Google Scholar 

  61. M. Ghobadifard, A. Azizi, S. Mohebbi, Ce-Co co-doped PbTiO3 (Ce-Co-PTO) with state-of-the-art photocatalytic efficiency for dyes treatment. J. Alloys Compd. 936, 168204–218214 (2023). https://doi.org/10.1016/j.jallcom.2022.168204

    Article  CAS  Google Scholar 

  62. E. Safaei, S. Mohebbi, Boosted photocatalytic performance of uniform hetero-nanostructures of Bi2WO6/CdS and Bi2WO6/ZnS for aerobic selective alcohol oxidation. J. Photochem. Photobiol. A 371, 173–181 (2019). https://doi.org/10.1016/j.jphotochem.2018.11.013

    Article  CAS  Google Scholar 

  63. M. Ghobadifard, G. Feizi, S. Mohebbi, Enhanced photocatalytic conversion of organic dyes using CeCoO3/MoS2 heterojunction as a highly effective visible-light-driven photocatalyst. Appl. Organomet. Chem. (2022). https://doi.org/10.1002/aoc.691

    Article  Google Scholar 

  64. M. Ghobadifard, P.V. Radovanovic, S. Mohebbi, Novel CoFe2O4/CuBi2O4 heterojunction p–n semiconductor as visible-light-driven nano photocatalyst for C (OH)–H bond activation. Appl. Organomet. Chem. (2022). https://doi.org/10.1002/aoc.6612

    Article  Google Scholar 

  65. M. Ghobadifard, S. Mohebbi, P.V. Radovanovic, Selective oxidation of alcohols by using CoFe2O4/Ag2MoO4 as a visible-light-driven heterogeneous photocatalyst. New J. Chem. 44, 2858–2867 (2020). https://doi.org/10.1039/c9nj05633e

    Article  CAS  Google Scholar 

  66. X. Chen, J. Zhang, J. Zeng, Y. Shi, S. Lin, G. Huang, H. Wang, Z. Kong, J. Xi, Z. Ji, MnS coupled with ultrathin MoS2 nanolayers as heterojunction photocatalyst for high photocatalytic and photoelectrochemical activities. J. Alloys Compd. 771, 364–372 (2019). https://doi.org/10.1016/j.jallcom.2018.08.319

    Article  CAS  Google Scholar 

  67. B. Wang, X. Wang, H. Yuan, T. Zhou, J. Chang, H. Chen, Direct Z-scheme photocatalytic overall water splitting on two dimensional MoSe2/SnS2 heterojunction. Int. J. Hydrogen Energy 45, 2785–2793 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.178

    Article  CAS  Google Scholar 

  68. J. Zhang, G. Huang, J. Zeng, X. Jiang, Y. Shi, S. Lin, X. Chen, H. Wang, Z. Kong, J. Xi, Z. Ji, SnS2 nanosheets coupled with 2D ultrathin MoS2 nanolayers as face-to-face 2D/2D heterojunction photocatalysts with excellent photocatalytic and photoelectrochemical activities. J. Alloys Compd. 775, 726–735 (2019). https://doi.org/10.1016/j.jallcom.2018.10.159

    Article  CAS  Google Scholar 

  69. R. Dong, Y. Zhong, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Morphology-controlled fabrication of CNT @ MoS2/SnS2 nanotubes for promoting the photocatalytic reduction of aqueous Cr(VI) under visible light. J. Alloys Compd. 784, 282–292 (2019). https://doi.org/10.1016/j.jallcom.2019.01.032

    Article  CAS  Google Scholar 

  70. H. Yang, J. Zhang, K. Dai, Organic amine surface modified one-dimensional CdSe0.8S0.2-diethylenetriamine/two-dimensional SnNb2O6 S-scheme heterojunction with promoted visible-light-driven photocatalytic CO2 reduction. Chin. J. Catal. 43, 255–264 (2022). https://doi.org/10.1016/S1872-2067(20)63784-6

    Article  CAS  Google Scholar 

  71. X. Li, Z. Wang, J. Zhang, K. Dai, K. Fan, G. Dawson, Branch-like CdxZn1xSe/Cu2O@Cu step-scheme heterojunction for CO2 photoreduction. Mater. Today Phys. 26, 100729–100739 (2022). https://doi.org/10.1016/j.mtphys.2022.100729

    Article  CAS  Google Scholar 

  72. K. Dai, J. Lv, J. Zhang, G. Zhu, L. Geng, C. Liang, Efficient visible-light-driven splitting of water into hydrogen over surface-fluorinated anatase TiO2 nanosheets with exposed 001 facets/layered CdS−diethylenetriamine nanobelts. ACS Sustain. Chem. Eng. 6, 12817–12826 (2018). https://doi.org/10.1021/acssuschemeng.8b02064

    Article  CAS  Google Scholar 

  73. L. Xuefeng, Z. Xing, Y. Zhang, L. Zhenzi, W. Xiaoyan, T. Siyu, Y. Xiujuan, Q. Zhu, W. Zhou, Fabrication of 3D flower-like black N-TiO2x@ MoS2 for unprecedented-high visible-light-driven photocatalytic performance. Appl. Catal. B 201, 119–127 (2017). https://doi.org/10.1016/j.apcatb.2016.08.031

    Article  CAS  Google Scholar 

  74. M. Guansheng, P. Zhigang, L. Yunfei, L. Yinong, T. Yaqiu, Hydrothermal synthesis of MoS2/SnS2 photocatalysts with heterogeneous structures enhances photocatalytic activity. Materials 16(12), 4436 (2023). https://doi.org/10.3390/ma16124436

    Article  CAS  Google Scholar 

  75. U.C. Jadan Resnik Jaleel, K.R. Sunaja Devi, R. Madhushree, D. Pinheiro, Statistical and experimental studies of MoS2/gC3N4/TiO2: a ternary Z-scheme hybrid composite. J. Mater. Sci. 56, 6922–6944 (2021). https://doi.org/10.1007/s10853-020-05695-z

    Article  CAS  Google Scholar 

  76. I. Firtina Ertis, B. Ismail, Synthesis and characterisation of MoS2–CdS catalyst for photocatalytic degradation of methylene blue from aqueous solution. J. Chem. Res. 41(9), 529–533 (2017). https://doi.org/10.3184/174751917X15027989009017

    Article  Google Scholar 

  77. L. Xiaozi, X. Wang, Z. Qingwei, W. Chengyan, S. Shaoqiang, J. Xiang, P. Cheng, Y. Li, X. Wang, X. Gao, Magnetically recyclable MoS2/Fe3O4 hybrid composite as visible light responsive photocatalyst with enhanced photocatalytic performance. ACS Sustain. Chem. Eng. 7(1), 1673–1682 (2018). https://doi.org/10.1021/acssuschemeng.8b05440

    Article  CAS  Google Scholar 

  78. P.H.N. Thai, V.N.K. Tran, L.T. Nguyen, L.K.T. Phan, P.A. Duong, H.V.T. Le, Investigating visible-photocatalytic activity of MoS2/TiO2 heterostructure thin films at various MoS2 deposition times. J. Nanomater. (2017). https://doi.org/10.1155/2017/3197540

    Article  Google Scholar 

Download references

Acknowledgements

The project was supported by Researchers Supporting Project Number (RSPD2024R675), King Saud University, Riyadh, Saudi Arabia.

Funding

The project was supported by Researchers Supporting Project number (RSPD2024R675), King Saud University, Riyadh, Saudi Arabia (Grant No. RSPD2024R675).

Author information

Authors and Affiliations

Authors

Contributions

K. Tamilarasu: investigation, methodology, writing-original draft, software. R. Ranjith: review & editing, validation, validation; software; P. Maadeswaran: investigation, writing-original draft, formal analysis. R. Ramesh: writing—review & editing, formal analysis. R. Thammasak: investigation, writing-original draft, formal analysis, visualization. Govindasami Periyasami: conceptualization, formal analysis, writing—review & editing. Perumal Karthikeyan: investigation, formal analysis, writing. C. Umarani: investigation, methodology, writing-original draft, formal analysis.

Corresponding author

Correspondence to C. Umarani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamilarasu, K., Ranjith, R., Maadeswaran, P. et al. Investigating the effect of MoS2–SnS2 heterojunction to enhance the decomposition of organic pollutants under visible light irradiation. J Mater Sci: Mater Electron 35, 607 (2024). https://doi.org/10.1007/s10854-024-12336-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12336-7

Navigation