Skip to main content

Advertisement

Log in

Facile Synthesis of CeO2/CoWO4 Hybrid Nanocomposites for High Photocatalytic Performance and Investigation of Antimicrobial Activity

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, novel CeO2/CoWO4 heterostructured nanocomposites (NCs) were synthesized via a hydrothermal method. X-ray diffraction, high-resolution transmission electron microscopy, UV–Vis diffuse reflectance spectroscopy and photoluminescence spectroscopy were carried out to determine the crystal structure, deep morphology, optical properties, and charge separation of the obtained photocatalysts (PCs), respectively. In comparison to the pristine CoWO4, the CeO2 and CeO2/CoWO4 PCs demonstrated enhanced activity of methylene blue (MB) aqueous dye photodegradation under visible-light exposure. The photodegradation efficiency of the as-prepared CeO2/CoWO4 photocatalyst showed the premier decomposition ratio (92.5%) of MB dye in 105 min among all samples, which was notably 1.8-fold and 2.2-fold that of the pristine CeO2 (43%) and CoWO4 (60%), respectively. Likewise, the CeO2/CoWO4 PCs retained satisfactory photo-reactivity even after five sequential recycling runs, indicating their excellent photocatalytic stability and robustness. Hence the succeeding superior PCs preferred further efficient charge (e–h+) separation, excellent visible-light absorption, and worthy interfacial energy transfer leads between CoWO4 and CeO2 nanoparticles. Additionally, a plausible mechanism for the photodegradation was proposed. The synergistic antibacterial properties of the CeO2/CoWO4 NCs were investigated by a gel diffusion method. Therefore, this work offers a novel avenue for the preparation of stable and efficient visible-light-driven PCs for environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Paul Chowdhury, and B.H. Shambharkar, Int. J. Appl. Ceram. Technol., 2020, 17, p 1467.

    Article  Google Scholar 

  2. Z. Shu, Y. Zhang, J. Ouyang, and H. Yang, Appl. Surf. Sci., 2017, 420, p 833.

    Article  CAS  Google Scholar 

  3. S.M. AlShehri, J. Ahmed, A.M. Alzahrani, and T. Ahamad, New J. Chem., 2017, 41, p 8178.

    Article  CAS  Google Scholar 

  4. J. Ke, M. Adnan Younis, Y. Kong, H. Zhou, J. Liu, L. Lei, and Y. Hou, Nano Micro Lett., 2018, 10, p 69.

    Article  CAS  Google Scholar 

  5. M.A. Subhan, T. Ahmed, N. Uddin, A.K. Azad, and K. Begum, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2015, 136, p 824.

    Article  CAS  Google Scholar 

  6. M.M. Rashad, A.A. Ismail, I. Osama, I.A. Ibrahim, and A.-H.T. Kandil, Arab. J. Chem., 2014, 7, p 71.

    Article  CAS  Google Scholar 

  7. K. Sujatha, T. Seethalakshmi, A.P. Sudha, and O.L. Shanmugasundaram, Nano Struct. Nano Objects, 2019, 18, p 100305.

    Article  CAS  Google Scholar 

  8. M. Nadeem, R. Khan, K. Afridi, A. Nadhman, S. Ullah, S. Faisal, Z.U. Mabood, C. Hano, and B.H. Abbasi, Int. J. Nanomed., 2020, 15, p 5951.

    Article  CAS  Google Scholar 

  9. Z. Cui, H. Zhou, G. Wang, Y. Zhang, H. Zhang, and H. Zhao, New J. Chem., 2019, 43, p 7355.

    Article  CAS  Google Scholar 

  10. N. Wetchakun, S. Chaiwichain, B. Inceesungvorn, K. Pingmuang, S. Phanichphant, A.I. Minett, and J. Chen, ACS Appl. Mater. Interfaces, 2012, 4, p 3718.

    Article  CAS  Google Scholar 

  11. K. Jothivenkatachalam, S. Prabhu, A. Nithya, S. Chandra Mohan, and K. Jeganathan, Desalin. Water Treat., 2015, 54, p 3134.

    Article  CAS  Google Scholar 

  12. F. Ahmadi, M. Rahimi-Nasrabadi, A. Fosooni, and M. Daneshmand, J. Mater. Sci. Mater. Electron., 2016, 27, p 9514.

    Article  CAS  Google Scholar 

  13. V. Shanmugam, K.S. Jeyaperumal, P. Mariappan, and A.L. Muppudathi, New J. Chem., 2020, 44, p 13182.

    Article  CAS  Google Scholar 

  14. Z. Li, D. Liu, W. Huang, Y. Sun, S. Li, and X. Wei, Surf. Interface Anal., 2019, 51, p 336.

    Article  CAS  Google Scholar 

  15. X. Yan, Z. Wu, C. Huang, K. Liu, and W. Shi, Ceram. Int., 2017, 43, p 5388.

    Article  CAS  Google Scholar 

  16. D. Madhan, P. Rajkumar, P. Rajeshwaran, A. Sivarajan, and M. Sangeetha, Appl. Phys. A, 2015, 120, p 463.

    Article  CAS  Google Scholar 

  17. A.B. Ali Baig, V. Rathinam, and J. Palaninathan, Appl. Water Sci., 2020, 10, p 76.

    Article  CAS  Google Scholar 

  18. A. Akbari-Fakhrabadi, R. Saravanan, M. Jamshidijam, R.V. Mangalaraja, and M.A. Gracia, J. Saudi Chem. Soc., 2015, 19, p 505.

    Article  Google Scholar 

  19. Z. Nasir, M. Shakir, R. Wahab, M. Shoeb, P. Alam, R.H. Khan, and M. Mobin, Int. J. Biol. Macromol., 2017, 94, p 554.

    Article  CAS  Google Scholar 

  20. Z. Liu, J. Xu, Y. Li, and H. Yu, Catal. Lett., 2018, 148, p 3205.

    Article  CAS  Google Scholar 

  21. L.S. Reddy Yadav, K. Lingaraju, B. Daruka Prasad, C. Kavitha, G. Banuprakash, and G. Nagaraju, Eur. Phys. J. Plus, 2017, 132, p 239.

    Article  Google Scholar 

  22. S. Li, S. Hu, W. Jiang, Y. Liu, Y. Zhou, J. Liu, and Z. Wang, J. Colloid Interface Sci., 2018, 530, p 171.

    Article  CAS  Google Scholar 

  23. M. Jayanthi, T. Lavanya, N.A. Saradha, K. Satheesh, S. Chenthamarai, and R. Jayavel, J. Nanosci. Nanotechnol., 2018, 18, p 3257.

    Article  CAS  Google Scholar 

  24. P. Taneja, S. Sharma, A. Umar, S.K. Mehta, A.O. Ibhadon, and S.K. Kansal, Mater. Chem. Phys., 2018, 211, p 335.

    Article  CAS  Google Scholar 

  25. H. Cui, B. Li, Y. Zhang, X. Zheng, X. Li, Z. Li, and S. Xu, Int. J. Hydrog. Energy, 2018, 43, p 18242.

    Article  CAS  Google Scholar 

  26. B. Maddah, F. Jookar-Kashi, and M. Akbari, J. Mater. Sci. Mater. Electron., 2018, 29, p 13723.

    Article  CAS  Google Scholar 

  27. R. Pandiyan, S. Mahalingam, and Y.-H. Ahn, J. Photochem. Photobiol. B, 2019, 191, p 18.

    Article  CAS  Google Scholar 

  28. H. Balavi, S. Samadanian-Isfahani, M. Mehrabani-Zeinabad, and M. Edrissi, Powder Technol., 2013, 249, p 549.

    Article  CAS  Google Scholar 

  29. Y. Zhao, T. Chen, R. Ma, J. Du, and C. Xie, Micro Nano Lett., 2018, 13, p 1394.

    Article  CAS  Google Scholar 

  30. S.L. Prabavathi, K. Govindan, K. Saravanakumar, A. Jang, and V. Muthuraj, J. Ind. Eng. Chem., 2019, 80, p 558.

    Article  CAS  Google Scholar 

  31. X. Wang, W. Su, X. Hu, H. Liu, M. Sheng, and Q. Zhou, Mater. Res. Express, 2018, 6, p 35507.

    Article  Google Scholar 

  32. S. Pourmasoud, M. Eghbali-Arani, F. Ahmadi, and M. Rahimi-Nasrabadi, J. Mater. Sci. Mater. Electron., 2017, 28, p 17089.

    Article  CAS  Google Scholar 

  33. H. Yang, B. Xu, S. Yuan, Q. Zhang, M. Zhang, and T. Ohno, Appl. Catal. B, 2019, 243, p 513.

    Article  CAS  Google Scholar 

  34. B. Singaram, K. Varadharajan, J. Jeyaram, R. Rajendran, and V. Jayavel, J. Photochem. Photobiol. A, 2017, 349, p 91.

    Article  CAS  Google Scholar 

  35. S. Feizpoor, and A. Habibi-Yangjeh, J. Colloid Interface Sci., 2018, 524, p 325.

    Article  CAS  Google Scholar 

  36. L. Wang, J. Ding, Y. Chai, Q. Liu, J. Ren, X. Liu, and W.-L. Dai, Dalton Trans., 2015, 44, p 11223.

    Article  CAS  Google Scholar 

  37. A. Priyadharsan, V. Vasanthakumar, S. Karthikeyan, V. Raj, S. Shanavas, and P.M. Anbarasan, J. Photochem. Photobiol. A, 2017, 346, p 32.

    Article  CAS  Google Scholar 

  38. S. Kumar, and A.K. Ojha, RSC Adv., 2016, 6, p 8651.

    Article  CAS  Google Scholar 

  39. Q. Qiao, K. Yang, L.-L. Ma, W.-Q. Huang, B.-X. Zhou, A. Pan, W. Hu, X. Fan, and G.-F. Huang, J. Phys. D Appl. Phys., 2018, 51, p 275302.

    Article  Google Scholar 

  40. J. Zhang, L.-L. Peng, Y. Tang, and H. Wu, Front. Mater. Sci., 2017, 11, p 139.

    Article  Google Scholar 

  41. C.M. Magdalane, K. Kaviyarasu, J.J. Vijaya, B. Siddhardha, B. Jeyaraj, J. Kennedy, and M. Maaza, J. Alloys Compd., 2017, 727, p 1324.

    Article  CAS  Google Scholar 

  42. Y. Yuan, G.-F. Huang, W.-Y. Hu, D.-N. Xiong, B.-X. Zhou, S. Chang, and W.-Q. Huang, J. Phys. Chem. Solids, 2017, 106, p 1.

    Article  CAS  Google Scholar 

  43. L. Zi-ya, Z. Man-ying, and W. Jing-ling, ChemistrySelect, 2018, 3, p 10630.

    Article  Google Scholar 

  44. H. Wei, L. Wang, Z. Li, S. Ni, and Q. Zhao, Nano Micro Lett., 2014, 3, p 6.

    Article  Google Scholar 

  45. S. Rajendran, M.M. Khan, F. Gracia, J. Qin, V.K. Gupta, and S. Arumainathan, Sci. Rep., 2016, 6, p 31641.

    Article  CAS  Google Scholar 

  46. A. Hamrouni, H. Lachheb, and A. Houas, Mater. Sci. Eng. B, 2013, 178, p 1371.

    Article  CAS  Google Scholar 

  47. Q.-P. Luo, X.-Y. Yu, B.-X. Lei, H.-Y. Chen, D.-B. Kuang, and C.-Y. Su, J. Phys. Chem. C, 2012, 116, p 8111.

    Article  CAS  Google Scholar 

  48. G. Yang, Z. Yan, and T. Xiao, Appl. Surf. Sci., 2012, 258, p 8704.

    Article  CAS  Google Scholar 

  49. W. Ben Soltan, M.S. Lassoued, S. Ammar, and T. Toupance, J. Mater. Sci. Mater. Electron., 2017, 28, p 15826.

    Article  CAS  Google Scholar 

  50. D. Cardillo, M. Weiss, M. Tehei, T. Devers, A. Rosenfeld, and K. Konstantinov, RSC Adv., 2016, 6, p 65397.

    Article  CAS  Google Scholar 

  51. L. Zhu, H. Li, Z. Liu, P. Xia, Y. Xie, and D. Xiong, J. Phys. Chem. C, 2018, 122, p 9531.

    Article  CAS  Google Scholar 

  52. X. Hao, Z. Jin, H. Yang, G. Lu, and Y. Bi, Appl. Catal. B, 2017, 210, p 45.

    Article  CAS  Google Scholar 

  53. J. Deng, L. Chang, P. Wang, E. Zhang, J. Ma, and T. Wang, Cryst. Res. Technol., 2012, 47, p 1004.

    Article  CAS  Google Scholar 

  54. A.D. Liyanage, S.D. Perera, K. Tan, Y. Chabal, and K.J. Balkus, ACS Catal., 2014, 4, p 577.

    Article  CAS  Google Scholar 

  55. U.M. García-Pérez, A. Martínez-de la Cruz, and J. Peral, Electrochim. Acta, 2012, 81, p 227.

    Article  Google Scholar 

  56. S. Phanichphant, A. Nakaruk, and D. Channei, Appl. Surf. Sci., 2016, 387, p 214.

    Article  CAS  Google Scholar 

  57. D. Channei, B. Inceesungvorn, N. Wetchakun, S. Ukritnukun, A. Nattestad, J. Chen, and S. Phanichphant, Sci. Rep., 2015, 4, p 5757.

    Article  Google Scholar 

  58. M. Sridharan, P. Kamaraj, Y.S. Huh, S. Devikala, M. Arthanareeswari, J.A. Selvi, and E. Sundaravadivel, Catal. Sci. Technol., 2019, 9, p 3686.

    Article  CAS  Google Scholar 

  59. H. Zhang, W. Tian, Y. Li, H. Sun, M.O. Tadé, and S. Wang, J. Mater. Chem. A, 2018, 6, p 6265.

    Article  CAS  Google Scholar 

  60. R.F. Landis, A. Gupta, Y.W. Lee, L.S. Wang, B. Golba, B. Couillaud, R. Ridolfo, R. Das, and V.M. Rotello, ACS Nano, 2017, 11, p 946.

    Article  CAS  Google Scholar 

  61. S. Cheeseman, A.J. Christofferson, R. Kariuki, D. Cozzolino, T. Daeneke, R.J. Crawford, V.K. Truong, J. Chapman, and A. Elbourne, Adv. Sci., 2020, 7, p 1902913.

    Article  CAS  Google Scholar 

  62. C.M. Magdalane, K. Kaviyarasu, J.J. Vijaya, B. Siddhardha, and B. Jeyaraj, J. Photochem. Photobiol. B, 2016, 163, p 77.

    Article  CAS  Google Scholar 

  63. X. Li, S.M. Robinson, A. Gupta, K. Saha, Z. Jiang, D.F. Moyano, A. Sahar, M.A. Riley, and V.M. Rotello, ACS Nano, 2014, 8, p 10682.

    Article  CAS  Google Scholar 

  64. A. Elbourne, S. Cheeseman, P. Atkin, N.P. Truong, N. Syed, A. Zavabeti, M. Mohiuddin, D. Esrafilzadeh, D. Cozzolino, C.F. McConville, M.D. Dickey, R.J. Crawford, K. Kalantar-Zadeh, J. Chapman, T. Daeneke, and V.K. Truong, ACS Nano, 2020, 14, p 802.

    Article  CAS  Google Scholar 

  65. H.B. Gasmalla, X. Lu, M.I. Shinger, L. Ni, A.N. Chishti, and G. Diao, J. Nanobiotechnol., 2019, 17, p 58.

    Article  Google Scholar 

  66. J.M.V. Makabenta, A. Nabawy, C.H. Li, S. Schmidt-Malan, R. Patel, and V.M. Rotello, Nat. Rev. Microbiol. 2021, 19, p 23.

    Article  CAS  Google Scholar 

  67. I.M. Sundaram, S. Kalimuthu, and G. Ponniah, Compos. Commun., 2017, 5, p 64.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Physics & Nanotechnology, SRM Institute of Science and Technology, Kanchipuram, Tamil Nadu, India for TEM measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Jayamani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvi, S., Rajendran, R., Barathi, D. et al. Facile Synthesis of CeO2/CoWO4 Hybrid Nanocomposites for High Photocatalytic Performance and Investigation of Antimicrobial Activity. J. Electron. Mater. 50, 2890–2902 (2021). https://doi.org/10.1007/s11664-020-08729-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08729-z

Keywords

Navigation