Skip to main content
Log in

Synthesis and influence of Zn substitution on optical and magnetic properties of cobalt ferrite nanoparticles by a polyacrylamide gel route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zn-doped CoFe2O4 nanoparticles were prepared via a modified polyacrylamide gel method. X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FTIR) data reveal the formation of cubic spinel phase Co1−xZnxFe2O4 (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) with average crystallite sizes from 57 to 44 nm. X-ray photoelectron spectrometer (XPS) result declares the compositional stoichiometry and atomic ratios of Co to Zn. Scanning electron microscopy (SEM) images show that the nanoparticles are prone to clustering via agglomeration. High crystallinity and elemental uniformity are demonstrated by transmission electron microscopy (TEM) technique. Ultraviolet–Visible (UV–Vis) diffuse refectance spectroscopy (DRS) measurements determine the optical band gaps from 1.46 to 1.57 eV. The hysteresis loops exhibit that all the products have a ferromagnetic behavior. The concentration of Zn2+ doping strikingly affects magnetic properties. The saturation magnetization (Ms) reaches a maximum value of 79 emu/g at x = 0.2. Both coercivity (Hc) and remanent magnetization (Mr) reduce with increasing content of Zn2+. The variation mechanism of magnetic properties is discussed. This work will provide a valuable reference for synthesizing doped cobalt ferrite and tuning magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All the relevant data are included in the article.

References

  1. S.E. Shirsath, X. Liu, M. Assadi, A. Younis, Y. Yasukawa, S.K. Karan, J. Zhang, J. Kim, D. Wang, A. Morisako, Y. Yamauchi, S. Li, Au quantum dots engineered room temperature crystallization and magnetic anisotropy in CoFe2O4 thin films. Nanoscale Horiz. 4, 434–444 (2019). https://doi.org/10.1039/c8nh00278a

    Article  CAS  PubMed  Google Scholar 

  2. S. Caliskan, M.A. Almessiere, A. Baykal, A.D. Korkmaz, H. Gungunes, Z. Alsalem, Y. Slimani, E. Gokce, Polat, Effects of Pr3+ ion doping on magnetic features of Ni–Co nanospinel ferrites synthesized via sonochemical approach. J. Magn. J. Magn. Magn. Mater. 570, 170492 (2023). https://doi.org/10.1016/j.jmmm.2023.170492

    Article  CAS  Google Scholar 

  3. V. Mowlika, A. Sivakumar, S.A. Martin Britto Dhas, C.S. Naveen, A.R. Phani, R. Robert, Shock wave-induced switchable magnetic phase transition behaviour of ZnFe2O4 ferrite nanoparticles. J. Nanostruct. Chem. 10, 203–209 (2020). https://doi.org/10.1007/s40097-020-00342-0

    Article  CAS  Google Scholar 

  4. M.A. Maksoud, G.S. El-Sayyad, A.H. Ashour, A.I. El-Batal, M.S. Abd-Elmonem, H.A. Hendawy, E.K. Abdel-Khalek, S. Labib, E. Abdeltwab, M.M. El-Okr, Synthesis and characterization of metals-substituted cobalt ferrite [MxCo(1–x)Fe2O4;(M = zn, Cu and Mn; x = 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mat. Sci. Eng. C-Mater. 92, 644–656 (2018). https://doi.org/10.1016/j.msec.2018.07.007

    Article  CAS  Google Scholar 

  5. Y. Slimani, M.A. Almessiere, A.D. Korkmaz, A. Baykal, H. Gungunes, M.G. Vakhitov, D.S. Klygach, S.V. Trukhanov, A.V. Trukhanov, The impact of indium ion on structural, magnetic, and electrodynamic traits of co-ni nanospinel ferrites. J. Magn. Magn. Mater. 562, 169782 (2022). https://doi.org/10.1016/j.jmmm.2022.169782

    Article  CAS  Google Scholar 

  6. J.J.K. Ribeiro, P.S.S. Porto, J.R.C. Proveti, M.S. Pessoa, P.C. Morais, P.S. Moscon, R.D. Pereira, E.P. Muniz, Influence of orange residue content on sol–gel synthesis of cobalt ferrite nanoparticles: morphological and magnetic properties. J. Magn. Magn. Mater. 586, 171220 (2023). https://doi.org/10.1016/j.jmmm.2023.171220

    Article  CAS  Google Scholar 

  7. I.C. Nlebedim, M. Vinitha, P.J. Praveen, D. Das, D.C. Jiles, Temperature dependence of the structural, magnetic, and magnetostrictive properties of zinc-substituted cobalt ferrite. J. Appl. Phys. 113, 193904 (2013). https://doi.org/10.1063/1.4804963

    Article  CAS  Google Scholar 

  8. D.D. Andhare, S.R. Patade, J.S. Kounsalye, K.M. Jadhav, Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via. Co-precipitation method. Phys. B 583, 412051 (2013). https://doi.org/10.1016/j.physb.2020.412051

    Article  CAS  Google Scholar 

  9. Z. Yan, J. Luo, Effects of Ce–Zn co-substitution on structure, magnetic and microwave absorption properties of nickel ferrite nanoparticles. J. Alloy Compd. 695, 1185–1195 (2017). https://doi.org/10.1016/j.jallcom.2016.08.333

    Article  CAS  Google Scholar 

  10. P. Coppola, F.G. Da Silva, G. Gomide, F. Paula, A. Campos, R. Perzynski, C. Kern, J. Depeyrot, R. Aquino, Hydrothermal synthesis of mixed zinc-cobalt ferrite nanoparticles: structural and magnetic properties. J. Nanopart. Res. 18, 1–15 (2017). https://doi.org/10.1007/s11051-016-3430-1

    Article  CAS  Google Scholar 

  11. P.A. Vinosha, A. Manikandan, A.S.J. Ceicilia, A. Dinesh, G.F. Nirmala, A.C. Preetha, Y. Slimani, M.A. Almessiere, A. Baykal, B. Xavier, Review on recent advances of zinc substituted cobalt ferrite nanoparticles: synthesis characterization and diverse applications. Ceram. Int. 47, 10512–10535 (2021). https://doi.org/10.1016/j.ceramint.2020.12.289

    Article  CAS  Google Scholar 

  12. Z. Li, Y. Lyu, Z. Ran, Y. Wang, Y. Zhang, N. Lu, M. Wang, M. Sassi, T.D. Ha, A.T. N’Diaye, P. Shafer, C. Pearce, K. Rosso, E. Arenholz, J.-Y. Juang, Q. He, Y.-H. Chu, W. Luo, P. Yu, Enhanced magnetization in CoFe2O4 through hydrogen doping. Adv. Funct. Mater. 33, 2212298 (2021). https://doi.org/10.1002/adfm.202212298

    Article  CAS  Google Scholar 

  13. H. Zeng, B. Yang, W. Shi, K. Huang, C. Ye, X. Ma, Z. Wang, F. Huang, X. Li, J. Deng, Peroxymonosulfate activation by sulfur doped CoFe2O4 rod for arsanilic acid removal: performance and arsenic enrichment. J. Enviro Chem. Eng. 11, 111044 (2023). https://doi.org/10.1016/j.jece.2023.111044

    Article  CAS  Google Scholar 

  14. O. Cadar, T. Dippong, M. Senila, E. Levei, Progress, challenges and opportunities in divalent transition metal-doped cobalt ferrites nanoparticles applications. Adv. Funct. Mater. 5, 1–17 (2023). https://doi.org/10.5772/intechopen.93298

    Article  CAS  Google Scholar 

  15. G.A. Lone, M. Ikram, Role of Ni doping in magnetic dilution of Fe sublattice and in tailoring optical properties of CoFe2O4. J. Alloy Compd. 934, 167891 (2023). https://doi.org/10.1016/j.jallcom.2022.167891

    Article  CAS  Google Scholar 

  16. R. Kuekha, T.H. Mubarak, B. Azhdar, Synthesis, structural, magnetic, and dielectric properties of Ni2+, Mn2+ co-substituted CoFe2O4 nanoferrites using sol–gel auto combustion method. Mater. Sci. Eng. B-Adv. 292, 116411 (2023). https://doi.org/10.1016/j.mseb.2023.116411

    Article  CAS  Google Scholar 

  17. V. Balasubramani, V. Mowlika, A. Sivakumar, N. Al Sdran, F. Maiz, M. Shkir, Design and investigation of sono-chemical synthesis of pure and Sn doped CoFe2O4 nanoparticles and their structural and magnetic properties. Inorg. Chem. Commun. 155, 111015 (2023). https://doi.org/10.1016/j.inoche.2023.111015

    Article  CAS  Google Scholar 

  18. H. Ghorbani, M. Eshraghi, Structural and magnetic properties of cobalt ferrite nanoparticles doped with cadmium. Phys. B 634, 413816 (2022). https://doi.org/10.1016/j.physb.2022.413816

    Article  CAS  Google Scholar 

  19. T. Tatarchuk, M. Bououdina, W. Macyk, O. Shyichuk, N. Paliychuk, I. Yaremiy, B. Al-Najar, M. Pacia, Structural, optical, and magnetic properties of Zn-Doped CoFe2O4 nanoparticles. Nanoscale Res. Lett. 12, 141 (2017). https://doi.org/10.1186/s11671-017-1899-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. E. Hema, A. Manikandan, P. Karthika, S.A. Antony, B.R. Venkatraman, A Novel synthesis of Zn2+-doped CoFe2O4 spinel nanoparticles: structural, morphological, opto-magnetic and catalytic properties. J. Supercond. Nov. Magn. 28, 2539–2552 (2015). https://doi.org/10.1007/s10948-015-3054-1

    Article  CAS  Google Scholar 

  21. M. Kaur, P. Kaur, S. Bahel, Study of magnetic, elastic and Ka-band absorption properties of Zn1–xCoxFe2O4(0.00 ≤ x ≤ 1.00) spine1 ferrites. Mater. Sci. Eng. B-Adv 297, 116736 (2023). https://doi.org/10.1016/j.mseb.2023.116736

    Article  CAS  Google Scholar 

  22. M. Miralaei, S. Salari, P. Kameli, M.T. Goodarzi, M. Ranjbar, Electrical and hydrogen gas sensing properties of Co1–χZnχFe2O4 nanoparticles; effect of the sputtered palladium thin layer. Int. J. Hydrog Energy. 48, 20133–20150 (2023). https://doi.org/10.1016/j.ijhydene.2023.02.033

    Article  CAS  Google Scholar 

  23. Y. Iwasaki, T. Fukumura, H. Kimura, A. Ohkubo, T. Hasegawa, Y. Hirose, T. Makino, K. Ueno, M. Kawasaki, High-throughput screening of ultraviolet–visible magnetooptical properties of spinel ferrite (Zn,Co)Fe2O4 solid solution epitaxial film by a composition-spread approach. Appl. Phys. Express 3, 103001 (2010). https://doi.org/10.1143/apex.3.103001

    Article  Google Scholar 

  24. N. Zhou, Y. Li, Y. Zhang, Y. Shu, S. Nian, W. Cao, Z. Wu, Synthesis and characterization of Co1–xCaxAl2O4 composite blue nano-pigments by the polyacrylamide gel method. Dyes Pigm. 148, 25–30 (2018). https://doi.org/10.1016/j.dyepig.2017.08.057

    Article  CAS  Google Scholar 

  25. Y.M. Desalegn, D.M. Andoshe, T.D. Desissa, Composite of bentonite/CoFe2O4/hydroxyapatite for adsorption of pb (II). Mater. Res. Express. 7, 115501 (2020). https://doi.org/10.1088/2053-1591/abc71f

    Article  CAS  Google Scholar 

  26. P. Zhu, S. Zhang, R. Liu, D. Luo, H. Yao, T. Zhu, X. Bai, Investigation of an enhanced Z-scheme magnetic recyclable BiVO4/GO/CoFe2O4 photocatalyst with visible-light-driven for highly efficient degradation of antibiotics. J. Solid State Chem. 314, 123379 (2022). https://doi.org/10.1016/j.jssc.2022.123379

    Article  CAS  Google Scholar 

  27. M.S. Darwish, H. Kim, H. Lee, C. Ryu, J.Y. Lee, J. Yoon, Synthesis of magnetic ferrite nanoparticles with high hyperthermia performance via a controlled co-precipitation method. Nanomaterials—Basel. 9, 1176 (2019). https://doi.org/10.3390/nano9081176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. V. Mowlika, C.S. Naveen, A.R. Phani, A. Sivakumar, S.M.B. Dhas, R. Robert, Shock wave induced magnetic phase transition in cobalt ferrite nanoparticles. Mater. Chem. Phys. 275, 125300 (2022). https://doi.org/10.1016/j.matchemphys.2021.125300

    Article  CAS  Google Scholar 

  29. S. Agrawal, A. Parveen, A. Azam, Structural, electrical, and optomagnetic tweaking of Zn doped CoFe2–χZnχO4–δ nanoparticles. J. Magn. Magn. Mater. 414, 144–152 (2016). https://doi.org/10.1016/j.jmmm.2016.04.059

    Article  CAS  Google Scholar 

  30. Y. Kumar, P.M. Shirage, Highest coercivity and considerable saturation magnetization of CoFe2O4 nanoparticles with tunable band gap prepared by thermal decomposition approach. J. Mater. Sci. 52, 4840–4851 (2017). https://doi.org/10.1007/s10853-016-0719-5

    Article  CAS  Google Scholar 

  31. M. Sundararajan, L. John Kennedy, P. Nithya, J. Judith Vijaya, M. Bououdina, Visible light driven photocatalytic degradation of rhodamine B using mg doped cobalt ferrite spinel nanoparticles synthesized by microwave combustion method. J. Phys. Chem. Solids. 108, 61–75 (2017). https://doi.org/10.1016/j.jpcs.2017.04.002

    Article  CAS  Google Scholar 

  32. S.A. Mazen, N.I. Abu-Elsaad, IR spectra, elastic and dielectric properties of Li–Mn ferrite. Int. Scholarly Res. Not. 2012, 907257 (2012). https://doi.org/10.5402/2012/907257

    Article  CAS  Google Scholar 

  33. T.R. Tatarchuk, M. Bououdina, N.D. Paliychuk, I.P. Yaremiy, V.V. Moklyak, Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites. J. Alloy Compd. 694, 777–791 (2017). https://doi.org/10.1016/j.jallcom.2016.10.067

    Article  CAS  Google Scholar 

  34. K. Pubby, K.V. Babu, S.B. Narang, Magnetic, elastic, dielectric, microwave absorption and optical characterization of cobalt-substituted nickel spinel ferrites. Mater. Sci. Eng. B-Adv. 255, 114513 (2020). https://doi.org/10.1016/j.mseb.2020.114513

    Article  CAS  Google Scholar 

  35. R.S. Yadav, J. Havlica, M. Hnatko, P. šajgalík, C. Alexander, M. Palou, E. Bartoníčková, M. Boháč, F. Frajkorová, J. Masilko, M. Zmrzlý, L. Kalina, M. Hajdúchová, V. Enev, Magnetic properties of Co1–χZnχFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling. J. Magn. Magn. Mater. 378, 190–199 (2015). https://doi.org/10.1016/j.jmmm.2014.11.027

    Article  CAS  Google Scholar 

  36. E. Keles Guner, Structural, Optical, magnetic and photocatalytic properties of Zn Doped CoFe2O4 decorated bentonite nanocomposites. Chemistryselect 8, e202204568 (2023). https://doi.org/10.1002/slct.202204568

    Article  CAS  Google Scholar 

  37. N. Liu, P. Du, P. Zhou, R.G. Tanguturi, Y. Qi, T. Zhang, C. Zhuang, Annealing temperature effects on the cation distribution in CoFe2O4 nanofibers. Appl. Surf. Sci. 532, 147440 (2020). https://doi.org/10.1016/j.apsusc.2020.147440

    Article  CAS  Google Scholar 

  38. Z. Zhou, Y. Zhang, Z. Wang, W. Wei, W. Tang, J. Shi, R. Xiong, Electronic structure studies of the spinel CoFe2O4 by X-ray photoelectron spectroscopy. Appl. Surf. Sci. 254, 6972–6975 (2008). https://doi.org/10.1016/j.apsusc.2008.05.067

    Article  CAS  Google Scholar 

  39. W.P. Wang, H. Yang, T. Xian, J.L. Jiang, XPS and magnetic properties of CoFe2O4 nanoparticles synthesized by a polyacrylamide gel route. Mater. Trans. 53, 1586–1589 (2012). https://doi.org/10.2320/matertrans.m2012151

    Article  CAS  Google Scholar 

  40. M. Srivastava, A.K. Ojha, S. Chaubey, A. Materny, Synthesis and optical characterization of nanocrystalline NiFe2O4 structures. J. Alloy Compd. 481, 515–519 (2009). https://doi.org/10.1016/j.jallcom.2009.03.027

    Article  CAS  Google Scholar 

  41. J. Revathi, M. John Abel, C. Lydia Pearline, T. Sumithra, P. Fermi Hilbert Inbaraj, Joseph Prince, influence of Zn2+ in CoFe2O4 nanoparticles on its photocatalytic activity under solar light irradiation. Inorg. Chem. Commun. 121, 108186 (2020). https://doi.org/10.1016/j.inoche.2020.108186

    Article  CAS  Google Scholar 

  42. G. Fan, J. Tong, F. Li, Visible-light-induced photocatalyst based on cobalt-doped zinc ferrite nanocrystals. Ind. Eng. Chem. Res. 51, 13639–13647 (2012). https://doi.org/10.1021/ie201933g

    Article  CAS  Google Scholar 

  43. C. Singh, A. Goyal, S. Singhal, Nickel-doped cobalt ferrite nanoparticles: efficient catalysts for the reduction of nitroaromatic compounds and photo-oxidative degradation of toxic dyes. Nanoscale. 6, 7959–7970 (2014). https://doi.org/10.1039/c4nr01730g

    Article  CAS  PubMed  Google Scholar 

  44. C. Singh, S. Jauhar, V. Kumar, J. Singh, S. Singhal, Synthesis of zinc substituted cobalt ferrites via reverse micelle technique involving in situ template formation: a study on their structural, magnetic, optical and catalytic properties. Mater. Chem. Phys. 156, 188–197 (2015). https://doi.org/10.1016/j.matchemphys.2015.02.046

    Article  CAS  Google Scholar 

  45. B.C. Feng, O. Tegus, T. Ochirkhyag, D. Odkhuu, N. Tsogbadrakh, D. Sangaa, J. Davaasambuu, Study of structural and magnetic properties of Spinel Zn doped cobalt ferrites. Solid State Phenom. 310, 124–133 (2020). https://doi.org/10.4028/www.scientific.net/ssp.310.124

    Article  Google Scholar 

  46. H. Ghayour, M. Abdellahi, M.G. Nejad, A. Khandan, S. Saber-Samandari, Study of the effect of the Zn2+ content on the anisotropy and specific absorption rate of the cobalt ferrite: the application of Co1–xZnxFe2O4 ferrite for magnetic hyperthermia. J. Aust Ceram. Soc. 54, 223–230 (2018). https://doi.org/10.1007/s41779-017-0144-5

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Chongqing Three Gorges University, the Talent Introduction Project (09826501), the Science and Technology Research Program of Chongqing Education Commission of China (KJQN202001225), Project (YB2020C0402) supported by Chongqing Key Laboratory of Geological Environment Monitoring and Disaster EarlyWarning in Three Gorges Reservoir Area.

Author information

Authors and Affiliations

Authors

Contributions

Runze Ling and Guangzhuang Sun designed and supervised this study. Runze Ling, Xiaoyu Yang, Yuxuan Li, Ling Huan and Yang Cai performed material preparation and data collection. Runze Ling, Guangzhuang Sun, Anrong Wang and Xiaoling Tan analyzed the data. Runze Ling and Guangzhuang Sun wrote the first draft of the manuscript and all authors revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guangzhuang Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, R., Yang, X., Li, Y. et al. Synthesis and influence of Zn substitution on optical and magnetic properties of cobalt ferrite nanoparticles by a polyacrylamide gel route. J Mater Sci: Mater Electron 35, 543 (2024). https://doi.org/10.1007/s10854-024-12305-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12305-0

Navigation