Skip to main content
Log in

Study of the effect of the Zn2 + content on the anisotropy and specific absorption rate of the cobalt ferrite: the application of Co1 − x Zn x Fe2O4 ferrite for magnetic hyperthermia

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Zn-substituted cobalt ferrite nanoparticles with different zinc contents (Co1 − x Zn x Fe2O4, x = 0.25, 0.5, 0.75) were prepared through a novel combustion method and subsequent milling process. A magnetostriction test was conducted to investigate the migration of Co2+ ions away from the octahedral sites to confirm the decrease of the anisotropy as a result of the increase of the Zn content. The single domain and superparamagnetic behaviors in the obtained samples were analyzed, and their variations by the increase of Zn content were compared. The variations of anisotropy in the vicinity of various Zn contents were accessed, and the specific absorption rate of the obtained samples was estimated. Linear response theory showed that the ratio of the anisotropy energy to the thermal energy, as a dimensionless anisotropy parameter (σ), can have a key role in the specific absorption rate of any magnetic material in hyperthermia applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. It should be noted that the grain size reported by TEM is larger than that reported by XRD. This error is originated from the fact that the scattering measures the average lengths between defects.

References

  1. Ghayour, H., Abdellahi, M., Ozada, M., Jabbarzare, S., Khandan, A.: Hyperthermia application of zinc doped nickel ferrite nanoparticles. J. Phys. Chem. Solids. 111, 464–472 (2017)

  2. Binns, C.: Medical applications of magnetic nanoparticles. Front. Nanosci. 6, 217–258 (2014)

    Article  Google Scholar 

  3. Szekeres, M., Tóth, I.Y., Illés, E., Hajdú, A., Zupkó, I., Farkas, K., et al.: Chemical and colloidal stability of carboxylated core-shell magnetite nanoparticles designed for biomedical applications. Int. J. Mol. Sci. 14, 14550–14574 (2013)

    Article  Google Scholar 

  4. Bornstein, B.A., Zouranjian, P.S., Hansen, J.L., Fraser, S.M., Gelwan, L.A., Teicher, B.A., Svensson, G.K.: Local hyperthermia, radiation therapy, and chemotherapy in patients with local–regional recurrence of breast carcinoma. J. Radiat. Oncol. Biol. Phys. 25, 79–85 (1993)

    Article  Google Scholar 

  5. Ma, M., Wu, Y., Zhu, J., Sun, Y., Zhang, Y., Gu, N.: Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. J. Magn. Magn. Mater. 268, 33–39 (2004)

    Article  Google Scholar 

  6. Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36, R167–R181 (2003)

    Article  Google Scholar 

  7. Berry, C.C.: Possible exploitation of magnetic nanoparticle–cell interaction for biomedical applications. J. Mater. Chem. 15, 543–547 (2005)

    Article  Google Scholar 

  8. Patel, D., Chang, Y., Lee, G.: Amino acid functionalized magnetite nanoparticles in saline solution. Curr. Appl. Phys. 9, S32–S34 (2009)

    Article  Google Scholar 

  9. Lee, S.J., Jeong, J.R., Shin, S.C., Kim, J.C., Kim, J.D.: Synthesis and characterization of superparamagnetic maghemite nanoparticles prepared by coprecipitation technique. J. Magn. Magn. Mater. 282, 147–150 (2004)

    Article  Google Scholar 

  10. Brusentsov, N.A., Kuznetsov, V.D., Brusentsova, T.N., Gendler, T.S., Novakova, A.A., Volter, E.R., et al.: Magnetisation of ferrifluids and effects of intracellular deposition of ferrite nanoparticles. J. Magn. Magn. Mater. 2, 272–276 (2004)

    Google Scholar 

  11. Pollert, E., Závěta, K., Vasseur, S., Duguet, E.: Sr-hexaferrite/maghemite composite nanoparticles possible new mediators for magnetic hyperthermia. Nanotechnology. 19, 215705 (2008)

    Article  Google Scholar 

  12. Kim, Y.I., Kim, D., Lee, C.S.: Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Phys. B Condens. Matter. 337, 42–51 (2003)

    Article  Google Scholar 

  13. Petitt, G.A., Forester, D.W.: Mössbauer study of cobalt-zinc ferrites. Phys. Rev. B Solid State. 4, 3912–3923 (1971)

    Article  Google Scholar 

  14. Prodelalova, J., Rittich, B., Spanova, A., Petrova, K., Benes, M.J.: Isolation of genomic DNA using magnetic cobalt ferrite and silica particles. J. Chromatogr. A. 1056, 43–48 (2004)

    Article  Google Scholar 

  15. Spanova, A., Rittich, B., Benes, M.J., Horak, D.: Ferrite supports for isolation of DNA from complex samples and polymerase chain reaction amplification. J. Chromatogr. A. 1080, 93–98 (2005)

    Article  Google Scholar 

  16. Tomitaka, A., Koshi, T., Hatsugai, S., Yamada, T., Takemura, Y.: Magnetic characterization of surface-coated magnetic nanoparticles for biomedical application. J. Magn. Magn. Mater. 323, 1398–1403 (2011)

    Article  Google Scholar 

  17. Pollert, E., Veverka, P., Veverka, M., Kaman, O., Zaveta, K., Vasseur, S., Epherre, R., Goglio, G., Duguet, E.: Search of new core materials for magnetic fluid hyperthermia: preliminary chemical and physical issues. Prog. Solid State Chem. 37, 1–14 (2009)

    Article  Google Scholar 

  18. Deraz, N.M.: Fabrication, characterization and magnetic behaviour of alumina-doped zinc ferrite nano-particles. J. Anal. Appl. Pyrolysis. 91, 48–54 (2011)

    Article  Google Scholar 

  19. Virden, A., Wells, S., O’Grady, K.: Physical and magnetic properties of highly anisotropic cobalt ferrite particles. J. Magn. Magn. Mater. 316, e768–e771 (2007)

    Article  Google Scholar 

  20. Clark, T.M., Evans, B.: Enhanced magnetization and cation distributions in nanocrystalline ZnFe2O4: a conversion electron Mossbauer spectroscopic investigation. IEEE Trans. Magn. 33, 3745–3747 (1997)

    Article  Google Scholar 

  21. Barcena, C., Sra, A.K., Chaubey, G.S., Khemtong, C., Liu, J.P., Gao, J.: Zinc ferrite nanoparticles as MRI contrast agents. Chem. Commun. 2224–2226 (2008)

  22. Bhame, S.D., Joy, P.A.: Enhanced magnetostrictive properties of CoFe2O4 synthesized by an autocombustion method. Sensors Actuators A Phys. 137(2), 256 (2007)

    Article  Google Scholar 

  23. Deraz, N.M., Alarifi, A.: Structural, morphological and magnetic properties of nano-crystalline zinc substituted cobalt ferrite system. J. Anal. Appl. Pyrolysis. 94, 41–47 (2012)

    Article  Google Scholar 

  24. Berchmans, L.J., Selvan, R.K., Kumar, P.N.S., Augustin, C.O.: Structural and electrical properties of Ni1−xMgxFe2O4 synthesized by citrate gel process. J. Magn. Magn. Mater. 279, 103–110 (2004)

    Article  Google Scholar 

  25. Cullity, B.D.: Elements of X-Rays Diffraction, Second edn, p. 338. Addison Wesley Publishing Co, Philippines (1978) (Chapter 10)

    Google Scholar 

  26. Wolska, E., Riedel, E., Wolski, W.: The evidence of \( {Cd}_{2+x}{Fe}_{1-x}^3+\left[{Ni}_{1-x}^2+{Fe}_{1+x}^{3+}\right]{O}_4 \) cation distribution based on X-ray and Mössbauer DataPhys. Status Solidi. 132, K51–K56 (1992)

    Article  Google Scholar 

  27. Shirsath, S.E., Mane, M.L., Yasukawa, Y., Liu, X., Morisako, A.: Phys. Chem. Chem. Phys. 16, 2347–2357 (2014)

    Article  Google Scholar 

  28. Somaiah, N., Jayaraman, T.V., Joy, P.A., Das, D.: Magnetic and magnetoelastic properties of Zn-doped cobaltferrites CoFe2-xZnxO4 (x = 0, 0.1, 0.2, and 0.3). J. Magn. Magn. Mater. 324, 2286–2291 (2012)

    Article  Google Scholar 

  29. Chen, Y.Z., Herz, A., Lib, Y.J., Borchers, C., Choi, P., Raabe, D., Kirchheim, R.: Nanocrystalline Fe–C alloys produced by ball milling of iron and graphite. Acta Mater. 61, 3172–3185 (2013)

    Article  Google Scholar 

  30. Arulmurugan, R., Jeyadevan, B., Vaidyanathan, G., Sendhilnathan, S.: Effect of zinc substitution on co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation. J. Magn. Magn. Mater. 288, 470–477 (2005)

    Article  Google Scholar 

  31. Neel, L.: Aimantation à saturation des ferrites mixtes de nickel et de zinc. C. R. Acad. Sci. Paris. 230, 375 (1950)

    Google Scholar 

  32. Buchanan, R.C.: Ceramic Materials for Electronics. Marcel Dekker, USA (2004)

    Google Scholar 

  33. Sundararajan, M., Kennedy, L.J., Vijaya, J.J., Aruldoss, U.: Microwave combustion synthesis of Co1xZnxFe2O4 (0 6 x 6 0.5): structural, magnetic, optical and vibrational spectroscopic studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 140, 421–430 (2015)

    Article  Google Scholar 

  34. Coey, J.M.D.: Rare Earth Permanent Magnetism, p. 220. Wiley, New York (1996)

    Google Scholar 

  35. Slovczewski, J.: Anisotropy and magnetostriction in magnetic oxides. J. Appl. Phys. Lett. 32, 2535 (1961)

    Google Scholar 

  36. Gorter, E.W.: Saturation magnetization and crystal chemistry of ferrimagnetic oxides. Philips Res. Rep. 9, 295 (1954)

    Google Scholar 

  37. Carvalho, M.H., Lima, R.J.S., Meneses, C.T., Folly, W.S.D., Sarmento, V.H.V., Coelho, A.A., Duque, J.G.S.: Determination of the effective anisotropy constant of CoFe2O4 nanoparticles through the T-dependence of the coercive field. J. Appl. Phys. 119, 093909 (2016)

    Article  Google Scholar 

  38. Natividad, E., Castro, M., Mediano, M.: Accurate measurement of the specific absorption rate using a suitable adiabatic magnetothermal setup. Appl. Phys. Lett. 92, 093116 (2009)

    Article  Google Scholar 

  39. Rashid, A., Manzoor, S.: Optimizing magnetic anisotropy of La1xSrxMnO3 nanoparticles for hyperthermia applications. J. Magn. Magn. Mater. 420, 232–240 (2016)

    Article  Google Scholar 

  40. Carrey, J., Mehdaoui, B., Respaud, M.: Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J. Appl. Phys. 109, 083921 (2011)

    Article  Google Scholar 

  41. Verde, E.L., Landi, G.T., Gomes, J.A., Sousa, M.H., Bakuzis, A.F.: Magnetic hyperthermia investigation of cobalt ferrite nanoparticles: comparison between experiment, linear response theory, and dynamic hysteresis simulations. J. Appl. Phys. 111, 123902 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Abdellahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghayour, H., Abdellahi, M., Nejad, M.G. et al. Study of the effect of the Zn2 + content on the anisotropy and specific absorption rate of the cobalt ferrite: the application of Co1 − x Zn x Fe2O4 ferrite for magnetic hyperthermia. J Aust Ceram Soc 54, 223–230 (2018). https://doi.org/10.1007/s41779-017-0144-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-017-0144-5

Keywords

Navigation