Skip to main content
Log in

Synthesis of WO3 NPs by pulsed laser ablation: Effect of laser wavelength

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have investigated the impact of laser pulse wavelength on the quantity of ablated materials. Specifically, this study investigated the structural, optical, and morphological characteristics of tungsten trioxide (WO3) nanoparticles (NPs) that were synthesized using the technique of pulsed-laser ablation of a tungsten plate. A DD drop of water was used as the ablation environment at a fixed fluence at 76.43 J/cm2 and pulse number was 400 pulses of the laser. The first and second harmonic generation ablations were carried out, corresponding to wavelengths of 1064 and 532 nm, respectively. The Q-switched Nd: YAG laser operates at a repetition rate of 1 Hz and has a pulse width of roughly 15 ns. These parameters are applicable to both wavelengths and are maintained at room temperature. Results of the absorption spectra demonstrated that the quantity of material ablated is inversely proportional to the laser pulses' wavelength. FESEM and TEM images show that WO3-NPs, which were prepared by both samples, were spherical. They also show that the wavelength of laser pulses caused an increase in the particle size of NPs. The X-ray diffraction analysis revealed a polycrystalline structure with a preferential orientation along the (220) plane, which corresponded to a diffraction angle of 58.84°. The energy of the optical bandgap of WO3-NPs increases with a decrease in the wavelength of laser pulses, which is calculated to be 3.4 and 3.42 eV for 1064nm and 532 nm wavelengths, respectively. The photoluminescence result agrees well with the estimated optical band gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All correspondence and requests for documents should be sent to Evan T. Salim, Maryam S. Muhsin, Makram A. Fakhri.

References

  1. H. Zhang, U. Siegert, R. Liu, W. Cai, Facile fabrication of ultrafine copper nanoparticles in organic solvent. Nanoscale Res. Lett. 4(705), 708 (2009)

    Google Scholar 

  2. O.A. Abdulrazzaq, E.T. Saleem, Inexpensive near-IR photodetector. Turkish J. Phys. 30, 35–39 (2006)

    Google Scholar 

  3. R. Mahfouz, F. Aires, A. Brenier, B. Jacquier, J. Bertolini, Synthesis and physico-chemical characteristics of nanosized particles produced by laser ablation of a nickel target in water. Appl. Surf. Sci. 254, 5181–5190 (2008)

    Article  CAS  Google Scholar 

  4. H. Hamdan. (2012) "Fabrication of TiO2 Nanotubes UsingElectrochemical Anodization", Baghdad University, Master thesis, 29–34

  5. E.T. Salim, I.R. Agool, M.A. Muhsien, Construction of SnO2/SiO2/Si heterojunction and its lineup using I-V and C-V measurements. Int. J. Mod. Phys. B 25(29), 3863–3869 (2011). https://doi.org/10.1142/S0217979211102022

    Article  Google Scholar 

  6. P. Mallick, S. Sahu, Structure, microstructure and optical absorption analysis of CuO nanoparticles synthesized by sol-gel route. Nanosci. Nanotechnol. 2(3), 71–74 (2012)

    Article  Google Scholar 

  7. D. Monti, A. Ponrouch, M. Estruga, M.R. Palacín, J.A. Ayllón, A. Roig, Microwaves as a synthetic route for preparing alectrochemically activeTiO2 nanoparticles. J. Mater. Res. 28(3), 340–347 (2013)

    Article  CAS  Google Scholar 

  8. E.T. Salim, Rapid thermal oxidation for silicon nanocrystal based solar cell. Int. J. Nanoelectron. Mater. 5(2), 95–100 (2012)

    Google Scholar 

  9. V. Svrcek, T. Sasaki, Y. Shimizu, N. Koshizaki, Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water. Appl. Phys. Lett. (2006). https://doi.org/10.1063/12397014

    Article  Google Scholar 

  10. D. Amans, A. Chenus, G. Edoux, C. Dujardin, C., Reynaud,"Nanodiamond synthesis by pulsed laser ablation in liquids". Diamond Relat. Mater. 18(2–3), 177–180 (2009)

    Article  CAS  Google Scholar 

  11. F. Hattab, M. Fakhry, Optical and structure properties for nano titanium oxide thin film prepared by PLD. 2012 First Natl Conf. Eng. Sci. (2012). https://doi.org/10.1109/NCES.2012.6740474

    Article  Google Scholar 

  12. S.R. Shafeeq, M.J. Abdul Razzaq, E.T. Salim, M.H. Wahid, Significance of niobium (V) oxide for practical applications: a review. Key Eng. Mater. 911, 89–95 (2022)

    Article  Google Scholar 

  13. F. Enza, B. Gökce, A. Giacomo, M. Meneghetti, G. Compagnini, M. Tommasini, F. Waag, A. Lucotti, C.G. Zanchi, P.M. Ossi, Nanoparticles engineering by pulsed laser ablation in liquids: concepts and applications. Nanomaterials 10(11), 2317 (2020)

    Article  Google Scholar 

  14. M.A. Muhsien, E.T. Salim, I.R. Agool, Preparation and characterization of (Au/n-Sn O2 /Si O2 /Si/Al) MIS device for optoelectronic application. Int. J. Opt. (2013). https://doi.org/10.1155/2013/756402

    Article  Google Scholar 

  15. M. Fakhri, E. Salim, A. Abdulwahhab, U. Hashim, M. Munshid, Z. Salim, The effect of annealing temperature on optical and photoluminescence properties of LiNbO3. Surf. Rev. Lett. 26(10), 1950068 (2019)

    Article  CAS  Google Scholar 

  16. A. Marwa, E. Salim, J. Saimon, A. Hadi, Electrical conductivity, mobility and carrier concentration in Nb2O5 films: Effect of NH4OH molarity. Int. J. Nanoelectron. Mater. 14(3), 259–286 (2021)

    Google Scholar 

  17. E.T. Salim, Optoelectronic properties of Fe2O3/Si heterojunction prepared by rapid thermal oxidation method. Indian J. Phys. 87(4), 349–353 (2013). https://doi.org/10.1007/s12648-012-0229-5

    Article  CAS  Google Scholar 

  18. F. Kresimir, R. Miller, Vibrationally excited ultrafast thermodynamic phase transitions at the water/air interface. Phys. Chem. Chem. Phys. 12(20), 5225–5239 (2010)

    Article  Google Scholar 

  19. M. Fakhri, E. Salim, M. Wahid, A. Abdulwahhab, Z. Salim, U. Hashim, Heat treatment assisted-spin coating for LiNbO3 films preparation: their physical properties. J. Phys. Chem. Solids 131, 180–188 (2019)

    Article  CAS  Google Scholar 

  20. E.T. Salim, M.S. Al-Wazny, M.A. Fakhri, Glancing angle reactive pulsed laser deposition (GRPLD) for Bi 2O3/Si heterostructure. Mod. Phys. Lett. B 27(16), 1350122 (2013). https://doi.org/10.1142/S0217984913501224

    Article  CAS  Google Scholar 

  21. V. Alfred, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. Hammer, G. Noojin, B. Rockwell, R. Birngruber, Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl. Phys. B: Lasers Opt. 68, 2 (1999)

    Google Scholar 

  22. M. Jérôme, J. Plain, Fabrication of aluminium nanostructures for plasmonics. J. Phys. D Appl. Phys. 48(18), 184002 (2014)

    Google Scholar 

  23. E.T. Salim, M.A. Fakhri, H. Hassen, Metal oxide nanoparticles suspension for optoelectronic devises fabrication. Int. J. Nanoelectron. Mater. 6(2), 121–128 (2013)

    Google Scholar 

  24. A. Ashkin, J.M. Dziedzic, Radiation pressure on a free liquid surface. Phys. Rev. Lett. 30(4), 139 (1973)

    Article  CAS  Google Scholar 

  25. H. Liu, Z. Wang, L. Gao, Y. Huang, H. Tang, X. Zhao, W. Deng, Optofluidic resonance of a transparent liquid jet excited by a continuous wave laser. Phys. Rev. Lett. 127(24), 244502 (2021)

    Article  CAS  PubMed  Google Scholar 

  26. E.T. Salim, Y. Al-Douri, M.S. Al Wazny, M.A. Fakhri, Optical properties of cauliflower-like Bi2O3nanostructures by reactive pulsed laser deposition (PLD) technique. Sol. Energy 107, 523–529 (2014). https://doi.org/10.1016/j.solener.2014.05.020

    Article  CAS  Google Scholar 

  27. W. Yang, H. Duan, C. Li, W. Deng, Crossover of varicose and whipping instabilities in electrified microjets. Phys. Rev. Lett. 112(5), 054501 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. F. Majid, M. Torkamany, S. Mirnia, S. Elahi, UV-visible light-induced antibacterial and photocatalytic activity of half harmonic generator WO3 nanoparticles synthesized by pulsed laser ablation in water. Opt. Mater. 85, 491–499 (2018)

    Article  Google Scholar 

  29. M.A. Muhsien, E.T. Salem, I.R. Agool, H.H. Hamdan, Gas sensing of Au/n-SnO2/p-PSi/c-Si heterojunction devices prepared by rapid thermal oxidation. Appl. Nanosci. 4, 719–732 (2014)

    Article  CAS  Google Scholar 

  30. N. Ravikiran, S. Challagulla, P. Sahu, S. Roy, R. Ganesan, Polymerizable sol–gel synthesis of nano-crystalline WO3 and its photocatalytic Cr (VI) reduction under visible light. Adv. Powder Technol. 28(12), 3265–3273 (2017)

    Article  Google Scholar 

  31. C. Cecilia, M. Pérez, G. Oskam, G. Gattorno, Synthesis and characterization of WO 3 polymorphs: Monoclinic, orthorhombic and hexagonal structures. J. Mater. Sci. Mater. Electron. 26, 5526–5531 (2015)

    Article  Google Scholar 

  32. M.A.M. Hassan, M.F.H. Al-Kadhemy, E.T. Salem, Effect irradiation time of Gamma ray on MSISM (Au/SnO2/SiO2/Si/Al) devices using theoretical modeling. Int. J. Nanoelectron. Mater. 8(2), 69–82 (2015)

    Google Scholar 

  33. H. Hoon, P. Muralidharan, D. Kim, Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts. J. Alloy. Compd. 475(1–2), 446–451 (2009)

    Google Scholar 

  34. Z. Haidong, J.Z. Ou, M. Strano, R. Kaner, A. Mitchell, K. Zadeh, Nanostructured tungsten oxide–properties, synthesis, and applications. Adv. Funct. Mater. 21(12), 2175–2196 (2011)

    Article  Google Scholar 

  35. M.A. Muhsien, E.T. Salim, Y. Al-Douri, A.F. Sale, I.R. Agool, Synthesis of SnO2 nanostructures employing Nd: YAG laser. Appl. Phys. A 120(2), 725–730 (2015). https://doi.org/10.1007/s00339-015-9249-2

    Article  CAS  Google Scholar 

  36. K. Shinichi, N. Kumagai, K. Kato, H. Yashiro, Hydrothermal synthesis of hexagonal tungsten trioxide from Li2WO4 solution and electrochemical lithium intercalation into the oxide. Solid State Ionics 135(1–4), 193–197 (2000)

    Google Scholar 

  37. S. Samiha, F. Sediri, N. Gharbi, C. Perruchot, S. Aeiyach, I. Rutkowska, P. Kulesza, M. Jouini, Hexagonal nanorods of tungsten trioxide: synthesis, structure, electrochemical properties and activity as supporting material in electrocatalysis. Appl. Surf. Sci. 257(19), 8223–8229 (2011)

    Article  Google Scholar 

  38. A. Fakhri, Y. Al-Douri, U. Hashim, E.T. Salim, K.D. Deo Prakash, Verma., Optical investigation of nanophotonic lithium niobate-based optical waveguide. Appl. Phys. B: Lasers Opt. 121(1), 107–116 (2015). https://doi.org/10.1007/s00340-015-6206-x

    Article  CAS  Google Scholar 

  39. J. Li, X. Liu, J. Cui, J. Sun, Hydrothermal synthesis of self-assembled hierarchical tungsten oxides hollow spheres and their gas sensing properties. ACS Appl. Mater. Interfaces 7(19), 10108–10114 (2015)

    Article  CAS  PubMed  Google Scholar 

  40. B. Abdelhamid, C. Zhang, C. Bittencourt, P. Umek, M. Olivier, R. Snyders, M. Debliquy, Hydrothermal synthesis of two dimensional WO3 nanostructures for NO2 detection in the ppb-level. Procedia Eng. 47, 228–231 (2012)

    Article  Google Scholar 

  41. M.A. Fakhri, Y. Al-Douri, U. Hashim, Fabricated optical strip waveguide of nanophotonics lithium niobate. IEEE Photonics J. 8(2), 4500410 (2016). https://doi.org/10.1109/JPHOT.2016.2531583

    Article  CAS  Google Scholar 

  42. H. Yoshiaki, S. Nomura, S. Mukasa, H. Toyota, T. Inoue, T. Kasahara, Synthesis of tungsten trioxide nanoparticles by microwave plasma in liquid and analysis of physical properties. J. Alloys Compd. 560, 105–110 (2013)

    Article  Google Scholar 

  43. L. George, S. Papaefthimiou, P. Yianoulis, A. Siokou, D. Kefalas, Structural and electrochemical properties of opaque sol–gel deposited WO3 layers. Appl. Surf. Sci. 218(1–4), 276–281 (2003)

    Google Scholar 

  44. M.A. Fakhri, Y. Al-Douri, E.T. Salim, U. Hashim, Y. Yusof, E.B. Choo, Z.T. Salim, Y.N. Jurn, Structural properties and surface morphology analysis of nanophotonic LINBO3. ARPN J. Eng. Appl. Sci. 11(8), 4974–4978 (2016)

    CAS  Google Scholar 

  45. T. Atiphol, P. Ngaotrakanwiwat, Synthesis of Nano-WO3 particles with polyethylene glycol for chromic film. Energy Procedia. 79, 704–709 (2015)

    Article  Google Scholar 

  46. W. Lili, H. Hu, J. Xu, S. Zhu, A. Ding, C. Deng, WO3 nanocubes: Hydrothermal synthesis, growth mechanism, and photocatalytic performance. J. Mater. Res. 34(17), 2955–2963 (2019)

    Article  Google Scholar 

  47. M.A. Fakhri, U. Hashim, E.T. Salim, Z.T. Salim, Preparation and charactrization of photonic LiNbO3generated from mixing of new raw materials using spry pyrolysis method. J. Mater. Sci. Mater. Electron. 27(12), 13105–13112 (2016). https://doi.org/10.1007/s10854-016-5455-8

    Article  CAS  Google Scholar 

  48. M. Wakufwa, A. Forbes, E. Haddad, R. Erasmus, G. Katumba, B. Masina, Synthesis of tungsten oxide nanostructures by laser pyrolysis. Int. J. Nanoparticles 1(3), 185–202 (2008)

    Article  Google Scholar 

  49. A. Osi, A. Nandiyanto, T. Ogi, F. Iskandar, T. Kim, K. Okuyama, Synthesis of composite WO3/TiO2 nanoparticles by flame-assisted spray pyrolysis and their photocatalytic activity. J. Alloys Compd. 591, 121–126 (2014)

    Article  Google Scholar 

  50. Z.T. Salim, U. Hashim, M.M. Arshad, M.A. Fakhri, E.T. Salim, Zinc oxide flakes-corolla lobes like nano combined structure for SAW applications. Mater. Res. Bull. 86, 215–219 (2017). https://doi.org/10.1016/j.materresbull.2016.11.015

    Article  CAS  Google Scholar 

  51. H. Rong, H. Wu, K. Hong, Synthesis and characterization of nanocrystalline tungsten oxide nanosheets in large scale. J. Mater. Res. 24(1), 187–191 (2009)

    Article  Google Scholar 

  52. A.A. Rashid, N.H. Saad, C. Bien, W. Lee, M. Haniff, Preliminary study of WO3 nanostructures produced via facile hydrothermal synthesis process for CO2 sensing. Appl. Mech. Mater. 431, 37–41 (2013)

    Article  Google Scholar 

  53. Z.T. Salim, U. Hashim, M.M. Arshad, M.A. Fakhri, E.T. Salim, Frequency-based detection of female Aedes mosquito using surface acoustic wave technology: early prevention of dengue fever. Microelectron. Eng. 179, 83–90 (2017). https://doi.org/10.1016/j.mee.2017.04.016

    Article  CAS  Google Scholar 

  54. B. Sone, J. Sithole, R. Bucher, S. Mlondo, J. Ramontja, S. Ray, E. Iwuoha, M. Maaza, Synthesis and structural characterization of tungsten trioxide nanoplatelet-containing thin films prepared by aqueous chemical growth. Thin Solid Films 522, 164–170 (2012)

    Article  CAS  Google Scholar 

  55. T. Zhu, M. Chong, Y. Phuan, J. Ocon, E. Chan, Effects of electrodeposition synthesis parameters on the photoactivity of nanostructured tungsten trioxide thin films: optimisation study using response surface methodology. J. Taiwan Inst. Chem. Eng. 61, 196–204 (2016)

    Article  CAS  Google Scholar 

  56. M.A. Fakhri, M.H. Wahid, B.A. Badr, E.T. Salim, U. Hashim, Z.T. Salim, Enhancement of lithium niobate nanophotonic structures via spin-coating technique for optical waveguides application. The Eur. Phys. J. Conf. 162(7), 01004 (2017). https://doi.org/10.1051/epjconf/201716201004

    Article  CAS  Google Scholar 

  57. E.T. Salim, J.A. Saimon, M.K. Abood, M.A. Fakhri, Some physical properties of Nb2O5 thin films prepared using nobic acid based colloidal suspension at room temperature. Mater. Res. Express 4(10), 106407 (2017). https://doi.org/10.1088/2053-1591/aa90a6

    Article  CAS  Google Scholar 

  58. M.A. Fakhri, E.T. Salim, M.H. Wahid, U. Hashim, Z.T. Salim, R.A. Ismail, Synthesis and characterization of nanostructured LiNbO3 films with variation of stirring duration. J. Mater. Sci. Mater. Electron. 28(16), 11813–11822 (2017). https://doi.org/10.1007/s10854-017-6989-0

    Article  CAS  Google Scholar 

  59. Y. Al-Douri, M.A. Fakhri, N. Badi, C.H. Voon, Effect of stirring time on the structural parameters of nanophotonic LiNbO3 deposited by spin-coating technique. Optik 156, 886–890 (2018). https://doi.org/10.1016/j.ijleo.2017.12.059

    Article  CAS  Google Scholar 

  60. A. Nair, (2010) Principles of Biotechnology, Laxmi, New Delhi

  61. M.A. Fakhri, M.H. Wahid, S.M. Kadhim, B.A. Badr, E.T. Salim, U. Hashim, Z.T. Salim, The structure and optical properties of lithium niobate grown on quartz for photonics application. The Eur. Phys. J. Conf. 162, 01005 (2017). https://doi.org/10.1051/epjconf/201716201005

    Article  CAS  Google Scholar 

  62. Y. Al-Douri, M.A. Fakhri, A. Bouhemadou, R. Khenata, M. Ameri, Stirrer time effect on optical properties of nanophotonic LiNbO3. Mater. Chem. Phys. 20, 243–248 (2018). https://doi.org/10.1016/j.matchemphys.2017.10.024

    Article  CAS  Google Scholar 

  63. C. Pattarin, T. Tsuge, H. Funakubo, O. Odawara, H. Wada, Laser wavelength effect on size and morphology of silicon nanoparticles prepared by laser ablation in liquid. Jpn. J. Appl. Phys. 52(2R), 025001 (2013)

    Article  Google Scholar 

  64. K. Chen, C. Hsu, J. Liu, Y. Liou, C. Yang, Investigation of antireflection Nb2O5 thin films by the sputtering method under different deposition parameters. Micromachines 7(9), 151 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  65. M.A. Fakhri, N.H. Numan, Q.Q. Mohammed, M.S. Abdulla, O.S. Hassan, S.A. Abduljabar, A.A. Ahmed, Responsivity and response time of nano silver oxide on silicon heterojunction detector. Int. J. Nanoelectron. Mater. 16, 18 (2018)

    Google Scholar 

  66. K. Hoon, K. Jeon, J. Choi, S. Lee, Laser wavelength and partial pressure effects on the formation of nanocrystalline Si. Mater. Sci. Eng. 101(1–3), 146–149 (2003)

    Google Scholar 

  67. M. Safa, D. Dorranian, A. Masoudi, L. Matin, Characterizing nickel oxide nanostructures produced by laser ablation method: effects of laser fluence. Appl. Phys. A 125, 1–9 (2019)

    Article  CAS  Google Scholar 

  68. A.A. Abdul-Hamead, F.M. Othman, M.A. Fakhri, Preparation of MgO–MnO 2 nanocomposite particles for cholesterol sensors. J. Mater. Sci. Mater. Electron. 32, 15523–15532 (2021)

    Article  CAS  Google Scholar 

  69. F. Zohreh, D. Dorranian, A. Sari, Laser ablation-assisted synthesis of tungsten sub-oxide (W17O47) nanoparticles in water: effect of laser fluence. Opt. Quant. Electron. 52, 1–16 (2020)

    Google Scholar 

  70. M.K. Abood, E.T. Salim, J.A. Saimon, Impact of substrate type on the microstructure of H-Nb2o5 thin film at room temperature. Int. J. Nanoelectron. Mater. 11, 55–64 (2018)

    Google Scholar 

  71. Makram A, Fakhri, B A. Bader, F G. Khalid, N H. Numan, A W. Abdulwahhab, U. Hashim, E T. Salim, M A. Munshid, Z T. Salim, Optical and morphological studies of LiNbO3 nano and micro photonic structural, AIP Conference Proceedings 2045, 020017 (2018); https://doi.org/10.1063/1.5080830

  72. M.K. Abood, M.H.A. Wahid, J.A. Saimon, E.T. Salim, Physical properties of Nb2O5 thin films prepared at 12M ammonium concentration. Int. J. Nanoelectron. Mater. 11, 237–244 (2018)

    Google Scholar 

  73. M.A. Fakhri, R.A. Ismail, A.K. Abass, L.Z. Mohammed, F.H. Alsultany, U. Hashim, Synthesis of LiNbO3/SiO2/Si nanostructures layer by layer based on mach-zehnder modulator using pulsed laser deposition route. SILICON 14(17), 11781–11795 (2022). https://doi.org/10.1007/s12633-022-01902-5

    Article  CAS  Google Scholar 

  74. H.A.A.A. Amir, M.A. Fakhri, A.A. Alwahib, E.T. Salim, F.H. Alsultany, U. Hashim, An investigation on GaN/ porous-Si NO2 gas sensor fabricated by pulsed laser ablation in liquid. Sens. Actuators, B Chem. 367, 132163 (2022)

    Article  Google Scholar 

  75. M. Fakhari, M. Torkamany, S. Mirnia, S. Elahi, UV-visible light-induced antibacterial and photocatalytic activity of half harmonic generator WO3 nanoparticles synthesized by pulsed laser ablation in water. Opt. Mater. 85, 491–499 (2018)

    Article  CAS  Google Scholar 

  76. M. Moradi, E. Solati, S. Darvishi, D. Dorranian, Effect of aqueous ablation environment on the characteristics of ZnO nanoparticles produced by laser ablation. J. Cluster Sci. 27, 127–138 (2016)

    Article  CAS  Google Scholar 

  77. H.T. Halboos, E.T. Salim, Silver doped niobium pentoxide nanostructured thin film, optical structural and morphological properties. IOP Conf. Series Mater. Sci. Eng. 454(1), 012174 (2018). https://doi.org/10.1088/1757-899X/454/1/012174

    Article  Google Scholar 

  78. W. Wei, Q.Y. Lian, J. Bao, Z. Liu, S. Pei, Tetragonal tungsten oxide nanobelts synthesized by chemical vapor deposition. J. Crystal Growth 312(21), 3147–3150 (2010)

    Article  Google Scholar 

  79. E. Solati, M. Mashayekh, D. Dorranian, Effects of laser pulse wavelength and laser fluence on the characteristics of silver nanoparticle generated by laser ablation. Appl. Phys. A 112, 689–694 (2013)

    Article  CAS  Google Scholar 

  80. E.T. Salim, J.A. Saimon, M.K. Abood, M.A. Fakhri, Electrical conductivity inversion for Nb2O5 nanostructure thin films at different temperatures. Mater. Res. Express 6(12), 126459 (2019). https://doi.org/10.1088/2053-1591/ab771c

    Article  CAS  Google Scholar 

  81. H.D. Jabbar, M.A. Fakhri, M.J. Abdul Razzaq, O.S. Dahham, E.T. Salim, F.H. Alsultany, Effect of different etching time on fabrication of an optoelectronic device based on GaN/Psi. J. Renew. Mater. 11(3), 1101–1122 (2023). https://doi.org/10.32604/jrm.2023.023698

    Article  CAS  Google Scholar 

  82. H.A.A.A. Amir, M.A. Fakhri, A.A. Alwahib, E.T. Salim, F.H. Alsultany, U. Hashim, Synthesis of gallium nitride nanostructure using pulsed laser ablation in liquid for photoelectric detector. Mater. Sci. Semicond. Process. 150, 106911 (2022)

    Article  Google Scholar 

  83. H.D. Abbar, M.A. Fakhri, M.J. AbdulRazzaq, Synthesis gallium nitride on porous silicon nano-structure for optoelectronics devices. SILICON 14(18), 12837–12853 (2022). https://doi.org/10.1007/s12633-022-01999-8

    Article  CAS  Google Scholar 

  84. Y. Kamlag, A. Goossens, I. Colbeck, J. Schoonman, Laser CVD of cubic SiC nanocrystals. Appl. Surf. Sci. 184(1–4), 118–122 (2001)

    Article  CAS  Google Scholar 

  85. M.A. Fakhri, R.S. Mohammed, Preparation and characterization of titanium dioxide using PLD at various energy of pulsed laser. Adv. Nat. Sci.: Nanosci. Nanotechnol. 13(4), 045013 (2022). https://doi.org/10.1088/2043-6262/aca60a

    Article  Google Scholar 

  86. V. Piriyawong, V. Thongpool, P. Asanithi, P. Limsuwan, Preparation and characterization of alumina nanoparticles in deionized water using laser ablation technique. J. Nanomater. (2012). https://doi.org/10.1155/2012/819403

    Article  Google Scholar 

  87. M.A. Fakhri, E.T. Salim, M.H. Wahid, A.W. Abdulwahhab, U. Hashim, Z.T. Salim, Efficiency enhancement of optical strip waveguide by the effect of heat treatment. Optik 180, 768–774 (2019). https://doi.org/10.1016/j.ijleo.2018.12.006

    Article  CAS  Google Scholar 

  88. H. Abubaker, L. Li, Z. Liu, Comparison of characteristics of selected metallic and metal oxide nanoparticles produced by picosecond laser ablation at 532 and 1064 nm wavelengths. Appl. Phys. A (2016). https://doi.org/10.1007/s00339-016-0426-8

    Article  Google Scholar 

  89. N. Jamaludin, K. Chaudhary, Z. Haider, M. Duralim, F. Ismail, M. Roslan, N. Amira, J. Ali, Effect of laser energy and wavelength on average size of gold nanoparticles synthesized by pulsed laser ablation in deionized water. J. Phys.: Conf. Series 1484(1), 012029 (2020)

    CAS  Google Scholar 

  90. M.A. Fakhri, E.T. Salim, A.W. Abdulwahhab, U. Hashim, M.A. Minshid, Z.T. Salim, The effect of annealing temperature on optical and photolumence proper. Surf. Rev. Lett. 26(10), 1950068 (2019). https://doi.org/10.1142/S0218625X19500689

    Article  CAS  Google Scholar 

  91. T. Takeshi, K. Iryo, N. Watanabe, M. Tsuji, Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl. Surf. Sci. 202(1–2), 80–85 (2002)

    Google Scholar 

  92. M.A. Fakhri, E.T. Salim, M.H.A. Wahid, Z.T. Salim, U. Hashim, A novel parameter effects on optical properties of the LiNbO3 films using sol-gel method. AIP Conf. Proc. 2213(1), 020242 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Laser and Optoelectronics Department at the University of Technology for providing logistical assistance for this work

Funding

The study mentioned in this publication was completed as part of the M.Sc degree requirements at Applied Science department, University of Technology, Baghdad, Iraq. And I fully paid my own financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, ETS, JAS, MSM, MAF, MHA, RKI, MAQ; methodology, ETS, JAS, MSM, MAF, MHA, RKI, MAQ; validation, ETS, JAS, MSM, MAF, MHA, RKI, MAQ; formal analysis, ETS, JAS, MSM, MAF, MHA, RKI, MAQ; investigation, ETS, JAS, MSM, MAF, MHA, RKI, MAQ; resources, ETS, JAS, MSM, MAF, MHA, RKI, MAQ; data curation, ETS, JAS, MSM, MAF, MHA; writing—original draft preparation, MSM, MHA; writing—review and editing, ETS, MAF, RKI, MAQ; visualization, ETS, JAS, MSM, MAF, MHA, RKI, MAQ; supervision, ETS,JAS,; project administration, ETS, JAS, MAF, MHA, RKI, MAQ; Acquisition of financing, self-funding The paper has been reviewed and approved by all authors.

Corresponding authors

Correspondence to Evan T. Salim or Makram A. Fakhri.

Ethics declarations

Conflicts of interest

The authors affirm that they do not have any conflicts of interest, and the disclosure provided for this publication is comprehensive and accurate to the best of their knowledge and belief. We concur that in the event that we acquire any knowledge suggesting the potential inaccuracy of this declaration or our non-compliance with the conflict-of-interest policy, we will promptly contact the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salim, E.T., Saimon, J.A., Muhsin, M.S. et al. Synthesis of WO3 NPs by pulsed laser ablation: Effect of laser wavelength. J Mater Sci: Mater Electron 35, 533 (2024). https://doi.org/10.1007/s10854-024-12249-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12249-5

Navigation