Skip to main content
Log in

Structure, microstructure, and enhanced sensing behavior of nickle ferrite–cobalt chromate for humidity sensor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Humidity sensing properties of NiFe2O4/CoCr2O4 nanocomposites ceramics were reported for the first time through chemical synthesis and mechanical mixing methods. The interaction of CoCr2O4 and NiFe2O4 was analyzed through X-ray diffraction, and the morphology of the samples was studied with Field emission scanning electron microscopy(FESEM). The results indicate that nonmetal elements act as interstitial ones to form the composite. As the amount of NiFe2O4 increased, the morphology of the nanocomposites changed from near-spherical to irregular cube-like shapes, with their particle sizes increasing over 10 nm. We studied elemental analysis using the EDX technique. Additionally, the resistance and humidity sensing responses become more noticeable, with desorption occurring slower than adsorption. The sensor takes 10 s to react and 15 s to recover. These findings provide a potential approach to creating large-scale chromate–ferrite composites and improving their structural, morphological, and humidity sensing properties, making them excellent candidates for humidity sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. The data that support the findings of this study are not openly available due to unpublished this work anywhere and are available from the corresponding author upon reasonable request.

References

  1. R.R. Kanna, K. Sakthipandi, N.E. Lenin, James jebaseelan samuel, neodymium doped on the manganese-copper nanoferrites: analysis of structural, optical, dielectric and magnetic properties. J. Mater. Sci. Mater. Electron. 30, 4473–4486 (2019)

    Article  CAS  Google Scholar 

  2. R.R. Kanna, K. Sakthipandi, A.S. Kumar, N.R. Dhineshbabu, S.S. Maraikkayar, A.S. Afroze, R.B. Jotania, M. Sivabharathy, Synthesis of dysprosium/Mn–Cu ferrite binary nanocomposite: analysis of structural, morphological, dielectric, and optomagnetic properties. Ceram. Int. 46, 13695–13703 (2020)

    Article  CAS  Google Scholar 

  3. K.M. Srinivasamurthy, A. El-Denglawey, K. Manjunatha, V. JagadeeshaAngadi, M.C. Oliveira, E. Longo, S.R. Lázaro, R.A.P. Ribeiro, J. Mater. Chem. C 10, 3418–3428 (2022)

    Article  CAS  Google Scholar 

  4. K. Sakthipandi, B.G. Babu, G. Rajkumar, A. Hossian, M.S. Raghavan, M.R. Kumar, Investigation of magnetic phase transitions in Ni0.5Cu0.25Zn0.25Fe2-xLaxO4 nanoferrites using magnetic and in-situ ultrasonic measurements. Phys. B: Condens. Matter. 645, 414280 (2022)

    Article  CAS  Google Scholar 

  5. R.R. Kanna, K. Sakthipandi, Structural, morphological, and optomagnetic properties of La/Cu/Cu-Mn ferrite ternary nanocomposites. J. Electron. Mater. 49, 1110–1119 (2020)

    Article  Google Scholar 

  6. E. Ahilandeswari, K. Sakthipandi, R.R. Kanna, G. Rajkumar, B.G. Babu, S. Arunmetha, A. Hossain, P. Sakthivel, V. Rajendran, M. SrinidhiRaghavan, Exploring the electromagnetic shielding behavior of lanthanum doped calcium nanoferrites. J. Rare Earths (2023). https://doi.org/10.1016/j.jre.2023.11.002

    Article  Google Scholar 

  7. S. Zhang, Bo. Cheng, Z. Gao, Di. Lan, Z. Zhao, F. Wei, Q. Zhu, Lu. Xinpo, Wu. Guanglei, J. Alloy. Compd. 8939, 162343 (2022)

    Article  Google Scholar 

  8. Di. Lan, Z.G.Z. Zhao, K. Kou, Wu. Hongjing, Comp. Commun. 26, 100767 (2021)

    Google Scholar 

  9. K. Manjunatha, I.C. Sathish, S.P. Kubrin, A.T. Kozakov, T.A. Lastovina, A.V. Nikolskii, K.M. Srinivasamurthy, M. Pasha, V.J. Angadi, J. Mater. Sci. Mater. Electron. 30, 10162–10171 (2019)

    Article  CAS  Google Scholar 

  10. K.M. Srinivasamurthy, K. Manjunatha, A. El-Denglawey, R. Rajaramakrishna, S.P. Kubrin, A. Pasha, V.J. Angadi, Mater. Chem. Phys. 275, 125222 (2022)

    Article  CAS  Google Scholar 

  11. V.J. Angadi, H.R. Lakshmiprasanna, K. Manjunatha, Bismuth—Fundamentals and Photonic Applications (IntechOpen, London, 2020)

    Google Scholar 

  12. A. El-Denglawey, K. Manjunatha, E.V. Sekhar, B. Chethan, J. Zhuang, V.J. Angadi, Ceram. Int. 47, 28614–28622 (2021)

    Article  CAS  Google Scholar 

  13. V.J. Angadi, K. Manjunatha, M.C. Oliveira, E. Longo, S.R. de Lázaro, R.A.P. Ribeiro, S.V. Bhat, Appl. Surf. Sci. 574, 151555 (2022)

    Article  Google Scholar 

  14. M. Abhishek, K. Manjunatha, V.J. Angadi, E. Melagiriyappa, B.N. Anandaram, H.S. Jayanna, M. Veena, K.S. Acharya, Chem. Data Collect. 28, 100460 (2020)

    Article  CAS  Google Scholar 

  15. M.K. Ho, H.H. Chiu, T.E. Hsu, B. Chethan, S.L. Yu, C.Y. Jheng, C.E. Chin, R. Selvam, V.J. Angadi, C.L. Cheng, H. Nagabhushana, K. Manjunatha, S.Y. Wu, Mater. Today Chem. 35, 101907 (2024)

    Article  CAS  Google Scholar 

  16. K. Manjunatha, K.M. Srininivasamurthy, C.S. Naveen, Y.T. Ravikiran, E.I. Sitalo, S.P. Kubrin, S. Matteppanavar, N.S. Reddy, V.J. Angadi, J. Mater. Sci. Mater. Electron. 30, 17202–17217 (2019)

    Article  CAS  Google Scholar 

  17. A. Balamurugan, R.S. Priya, P. Chaudhary, E.R. Kumar, T. Indumathi, Ch. Srinivas, B.C. Yadav, D.L. Sastry, Ceram. Int. 48, 4874–4885 (2022)

    Article  CAS  Google Scholar 

  18. R.S. Priya, P. Chaudhary, E.R. Kumar, A. Balamurugan, Ch. Srinivas, G. Prasad, B.C. Yadav, D.L. Sastry, Ceram. Int. 47, 15995–16008 (2021)

    Article  Google Scholar 

  19. K. Manjunatha, P.Z. Si, G.J. Gowda, A. El-Denglawey, V.J. Angadi, Ceram. Int. 48, 11654–11661 (2022)

    Article  CAS  Google Scholar 

  20. V.J. Angadi, K. Manjunatha, S.P. Kubrin, A.T. Kozakov, A.G. Kochur, A.V. Nikolskii, I.D. Petrov, S.I. Shevtsova, N.H. Ayachit, J. Alloys Compd. 842, 155805 (2020)

    Article  CAS  Google Scholar 

  21. K. Manjunatha, V. JagadeeshaAngadi, M.C. Oliveira, S.R. de Lazaro, E. Longo, R.A.P. Ribeiro, S.O. Manjunatha, N.H. Ayachit, J. Mater. Chem. C 9, 6452–6469 (2021)

    Article  CAS  Google Scholar 

  22. F.M. Al-Hilli, S. Li, K.S. Kassim, Mater. Chem. Phys. 128, 127–132 (2011)

    Article  CAS  Google Scholar 

  23. K. Manjunatha, V.J. Angadi, R. Rajaramakrishna, U.M. Pasha, J. Supercond. Nov. Magn. 33, 2861–2866 (2020)

    Article  CAS  Google Scholar 

  24. P. Thamilmaran, M. Arunachalam, S. Sankarrajan, K. Sakthipandi, J. Magn. Magn. Mater. 396, 181–189 (2015)

    Article  CAS  Google Scholar 

  25. K. Manjunatha, H.H. Chiu, M.K. Ho, T.E. Hsu, S.L. Yu, C.E. Chin, C.L. Cheng, M.C. de Oliveira, E. Longo, R.A.P. Ribeiro, H. Nagabhushana, S.Y. Wu, ACS Appl. Nano Mater. 6, 12002–12015 (2023)

    Article  CAS  Google Scholar 

  26. K. Manjunatha, I.S. Yahia, H.Y. Zahran et al., J. Supercond. Nov. Magn. 35, 3773–3785 (2022)

    Article  CAS  Google Scholar 

  27. V.R. Khadse, S. Thakur, K.R. Patil, P. Patil, Sensors Actuators. B Chem. 203, 229 (2014)

    Article  CAS  Google Scholar 

  28. A. El-Denglawey, K. Manjunatha, V.J. Angadi, B. Chethan, S.B. Somvanshi, J. Mater. Sci. Mater. Electron. 32, 23554–23565 (2021)

    Article  CAS  Google Scholar 

  29. K. Mazumder, A. Sharma, Y. Kumar, P.M. Shirage, Phys. Chem. Chem. Phys. 20, 28257–28266 (2018). https://doi.org/10.1039/C8CP05452E

    Article  CAS  PubMed  Google Scholar 

  30. V.J. Angadi, K.M. Batoo, S. Hussain, H.R. Lakshmiprasanna, K. Manjunatha, S.O. Manjunatha, J. Mater. Sci. Mater. Electron. 33, 24308–24320 (2022)

    Article  CAS  Google Scholar 

  31. K. Arshaka, K. Twomey, D. Egan, Sensors 2, 50–61 (2002)

    Article  CAS  Google Scholar 

  32. P.L. Mahapatra, P.P. Mondal, S. Das, D. Saha, Microchem. J. 152, 104452 (2020)

    Article  CAS  Google Scholar 

  33. Y. Kumar, A. Sharma, P.M. Shirage, RSC Adv. 7, 55778–55785 (2017)

    Article  CAS  Google Scholar 

  34. F. Tudorache, I. Petrila, S. Condurache-Bota, C. Constantinescu, M. Praisler, Superlattices Microstruct. 77, 276–285 (2015). https://doi.org/10.1016/j.spmi.2014.11.022

    Article  CAS  Google Scholar 

  35. V.J. Angadi, B. Chethan, V. Pattar, N.B. Shigihalli, S.A. Patil, M. Ubaidullah, S.S. Sehgal, C. Prakash, S.O. Manjuantha, K. Manjunatha, J. Alloys Compd. 947, 169438 (2023)

    Article  Google Scholar 

  36. I.C. Sathisha, K. Manjunatha, A. Bajorek, B.R. Babu, B. Chethan, T.R. Kumar Reddy, Y.T. Ravikiran, V.J. Angadi, J. Alloys Compd. 2848, 156577 (2020)

    Article  Google Scholar 

  37. H.R. Lakshmiprasanna, K. Manjunatha, V.J. Angadi, U.M. Pasha, J. Husain, Nano-Struct. Nano-Objects 24, 100608 (2020)

    Article  Google Scholar 

  38. N. Ramprasad, F. Tudorache, G.V.J. Gowda, A. El-Denglawey, K.S. Kantharaj, K.V.A. Gowda, K. Manjunatha, V.J. Angadi, J. Mater. Sci. Mater. Electron. 33, 3584–13592 (2022)

    Article  Google Scholar 

  39. K. Manjunatha, B. Chethan, S.Y. Wu, M. Ubaidullah, S.F. Shaikh, A.M. Al-Enizi, N.B. Alanzi, B. Pandit, A. Bajorek, V.J. Angadi, Ceram. Int. 49, 40236 (2023)

    Article  CAS  Google Scholar 

  40. V.J. Angadi, K. Manjunatha, M.K. Ho, S.Y. Wu, M. Ubaidullah, A.M. Al-Enizi, B. Pandit, B. Chethan, J. Inorg. Organomet. Polym. (2023). https://doi.org/10.1007/s10904-023-02912-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their sincere appreciation to the Researchers Supporting Project number (RSPD2024R682), King Saud University, Riyadh, Saudi Arabia, for the support. We acknowledge the financial support provided by the National Science and Technology Council (NSTC) of the Republic of China through grant numbers NSTC-112-2112-M-259-017, NSTC-112-2811-M-259-012, NSTC-111-2112-M-259-013, NSTC-111-2811-M-259-009, and NSTC-111-2112-M-259-014.

Funding

This study was supported by Researchers Supporting Project number (RSPD2024R682), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

KM: Conceptualization, Methodology, Software and Writing- Original MKH: Analysis, TEH: Analysis, AK: Analysis of humidity data, SYW: Analysis and editing, SSH: Synthesis, CB: Analysis of humidity data, VP: Analysis of humidity data, BP: editing, MU: Analysis of humidity data, JAV: Conceptualization, Methodology, Software, and Writing-Original.

Corresponding authors

Correspondence to Sheng Yun Wu, Nagaraj Basavegowda or V. Jagadessha Angadi.

Ethics declarations

Competing interests  The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjunatha, K., Ho, MK., Hsu, TE. et al. Structure, microstructure, and enhanced sensing behavior of nickle ferrite–cobalt chromate for humidity sensor applications. J Mater Sci: Mater Electron 35, 471 (2024). https://doi.org/10.1007/s10854-024-12198-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12198-z

Navigation