Skip to main content
Log in

Cerium doped cobalt chromate for resistive and capacitive humidity sensor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of cerium (Ce3+) on the structural, microstructural, Fourier infrared spectroscopic, electrical, and humidity sensing behavior of CoCr2−xCexO4(CoCrCe) is reported in this paper. To prepare the samples, Solution combustion method using mixture of urea and glucose as a fuel. Samples are sintered for 600 °C for 3 h to get single phase. To analyses the creatinine nature and morphology, samples were characterize X-ray diffraction (XRD) and scanning electron microscopy. XRD reveals that formation of cubic spinel structures with typical crystallite sizes of less than 10 nm. When Ce3+ ions are replaced by Cr3+ ions, the lattice parameter found decreases from 8.3289 to 8.3163 Å. This is due to the creation of a compressive lattice strain and may be due to the differences between ionic radius of Ce3+ as compared to Cr3+. We discovered the chrommate structure in the absence of impurities by analysing the octahedral and tetrahedral stretching bands using Fourier infrared spectroscopy. Scanning Electron microscopy results reveals that samples exhibits highly porous nature. Elemental analysis were confirms the Ce3+ is present in the samples. All samples subjected to study the humidity sensing studies. The relative humidity influences the resistivity of the surrounding air significantly. We also investigated the relative permittivity characteristics, the conductivity of the samples of interest, and the capacitive sensor’s response time at a fixed frequency of f = 1 kHz. Further, The variation of both relative permittivity and electrical resistivity were strongly depending on humidity. As concentration of Ce3+ increases the permittivity (unit less), Conductivity, electrical capacity(normalized), Response time of capacitive sensor were found increases such as 150, 108 [Ω m], 10, 90 this is may be due to the larger ionic radius of the Ce3+ and also may be high porosity of the samples. Ce3+ at 2 mol% has improved humidity sensing properties as compared to other concentration. We conclude that CoCr1.98Ce0.02O4 be useful for an active material in humidity-sensing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. Yamazoe, Y. Shimizu, Humidity sensors: principles and applications. Sens. Actuators 10, 379–398 (1986)

    Article  CAS  Google Scholar 

  2. H. Farahani, R. Wagiran, M.N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors. 14, 7881–7939 (2014)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  3. M. Pelino, C. Cantalini, M. Faccio, Principles and applications of ceramic humidity sensors. Act. Passiv Electron. Compon. 16, 69–87 (1994)

    Article  Google Scholar 

  4. K. Manjunatha, V. Jagadeesha Angadi, M.C. Oliveira, S.R. de Lazaro, E. Longo, R.A.P. Ribeiro, S.O. Manjunatha, N.H. Ayachit, Towards shape-oriented bi-doped CoCr2O4 nanoparticles from theoretical and experimental perspective: structural, morphological, optical, electrical and magnetic properties. J. Mater. Chem. C 9, 6452–6469 (2021)

    Article  CAS  Google Scholar 

  5. I. Petrila, F. Tudorache, S. Tascu, Micromagnetic investigation of all-optical switching. Phys. Lett. A 377, 1495–1498 (2013)

    Article  ADS  CAS  Google Scholar 

  6. K. Manjunatha, V. Jagadeesha Angadi, R. Rajaramakrishna, U. Mahaboob, Pasha, Role of 5 mol% Mg–Ni on the structural and magnetic properties of cobalt chromates crystallites prepared by solution combustion technique. J. Supercond. Nov. Magn. 33, 2861–2866 (2020)

    Article  CAS  Google Scholar 

  7. K. Manjunatha, V. Jagadeesha Angadi, K.M. Srinivasamurthy, S. Matteppanavar, V.K. Pattar, Mahaboob Pasha, exploring the structural, dielectric and magnetic properties of 5 Mol% Bi3+-Substituted CoCr2O4 nanoparticles. J. Supercond Nov Magn. 33, 1747–1757 (2020)

    Article  CAS  Google Scholar 

  8. I. Petrila, V. Manta, Metropolis Monte Carlo analysis of all-optical switching. Comput. Phys. Commun. 185, 2874–2878 (2014)

    Article  ADS  CAS  Google Scholar 

  9. I. Petrila, F. Ungureanu, V. Manta, Effects of laser beam modulation on all-optical switching phase diagrams in magneto-optical ultrafast storage device. J. Comput. Electron. 14, 627–633 (2015)

    Article  CAS  Google Scholar 

  10. K.K. Bharathi, J.A. Chelvane, G. Markandeyulu, Magnetoelectric properties of Gd and Nd-doped nickel ferrite. J. Magn. Magn. Mater. 321, 3677–3680 (2009)

    Article  ADS  Google Scholar 

  11. S. Chikazumi, Physics of ferromagnetism (Oxford University Press Inc, New York, 1997)

    Book  Google Scholar 

  12. F. Tudorache, I. Petrila, Effects of partial replacement of Iron with Tungsten on microstructure, electrical, magnetic and humidity properties of copper-zinc ferrite material. J. Electron. Mater. 43, 3522–3526 (2014)

    Article  ADS  CAS  Google Scholar 

  13. K. Wu, Y. Lu, Y. Liu, Y. Liu, M. Shen, M. Debliquy, C. Zhang, Synthesis and acetone sensing properties of copper (Cu2+) substituted zinc ferrite hollow micro-nanospheres. Ceram. Int. 46(18), 28835–28843 (2020)

    Article  CAS  Google Scholar 

  14. I. Petrila, F. Tudorache, Influence of partial substitution of Fe3+ with W3+ on the microstructure, humidity sensitivity, magnetic and electrical properties of barium hexaferrite.  Superlattices Microstruct. 70, 46–53 (2014)

    Article  ADS  CAS  Google Scholar 

  15. K. Manjunatha, V. Jagadeesha Angadi, R.A.P. Ribeiro, M.C. Oliveira, S.R. de Lázaro, M.R.D. Bomio, S. Matteppanavar, S. Rayaprol, P.D. Babu, Structural, electronic and magnetic properties of Sc3+ doped CoCr2O4 nanoparticles. New J. Chem. 44, 14246–14255 (2020)

    Article  CAS  Google Scholar 

  16. P. Thamilmaran, M. Arunachalam, S. Sankarrajan, K. Sakthipandi, M. Sivabharathy, Structural transition in Gd doped LaCrO3 isovalent by in-situ ultrasonic measurements. Phys. B Condens. Matter 530, 270–276 (2018)

    Article  ADS  CAS  Google Scholar 

  17. R.R. Kanna, K. Sakthipandi, N. Lenin et al., Neodymium doped on the manganese–copper nanoferrites: analysis of structural, optical, dielectric and magnetic properties. J. Mater. Sci. Mater. Electron. 30, 4473–4486 (2019)

    Article  CAS  Google Scholar 

  18. N. Betancur-Granados, O.J. Restrepo-Baena, Flame spray pyrolysis synthesis of ceramic nanopigments CoCr2O4: the effect of key variables. J. Eur. Ceram. Soc. 37, 5051–5056 (2017)

    Article  CAS  Google Scholar 

  19. K. Manjunatha, V.J. Angadi, A.P. Renan, E. Ribeiro, M.C. Longo, R.D. Oliveira, Mauricio, R. Bomio, Sergio, S. de Lazaro, S. Matteppanavar, P.D. Rayaprol, M. Pasha, Structural, electronic, vibrational and magnetic properties of Zn2+ substituted MnCr2O4 nanoparticles. J. Magn. Magn. Mater. 502, 166595 (2020)

    Article  CAS  Google Scholar 

  20. V. Jagadeesha Angadi, K. Manjunatha, K. Praveena, V.K. Pattar, B.J. Fernandes, S.O. Manjunatha, J. Husain, S.V. Angadi, L.D. Horakeri, K.P. Ramesh, Magnetic properties of larger ionic radii samarium and gadalonium doped manganese zinc ferrite nanoparticles prepared by solution combustion method. J. Magn. Magn. Mater. 529, 167899 (2021)

    Article  CAS  Google Scholar 

  21. P. Pankaj Choudhary, A. Saxena, V.N. Yadav, A. Rai, Mishra, Dielectric and ferroelectric properties of CoCr2O4 nanoceramics. J. Adv. Dielectr. 9, 1950015 (2019)

    Article  Google Scholar 

  22. K. Manjunatha, V.J. Angadi, B.J. Fernandes, K.P. Ramesh, Synthesis and study of structural and dielectric properties of Dy-Ho doped Mn-Zn ferrite nanoparticles (Intech Open publishers, London, 2021)

    Book  Google Scholar 

  23. V. Jagadeesha Angadi, K. Manjunatha, M. Akyol, A. Ekicibil, S. Matteppanavar, A.V. Pavlenko, S.P. Kubrin, Temperature-dependent dielectric and magnetic properties of scandium-substituted HoFeO3 nanoparticles. J. Supercond. Nov. Magn. 33, 3525–3534 (2020)

    Article  Google Scholar 

  24. S. Pavithradevi, N. Suriyanarayanan, T. Boobalan, Synthesis, structural, dielectric and magnetic properties of polyol assisted copper ferrite nano particles. J. Magn. Magn. Mater. 426, 137–143 (2017)

    Article  ADS  CAS  Google Scholar 

  25. K. Ali, J. Iqbal, T. Jan, I. Ahmad, D. Wan, I. Ahmad, Influence of NiO concentration on structural, dielectric and magnetic properties of core/shell CuFe2O4/NiO nanocomposites. Mater. Chem. Phys. 195, 283–294 (2017)

    Article  CAS  Google Scholar 

  26. K. Manjunatha, K.M. Srininivasamurthy, C.S. Naveen, Y.T. Ravikiran, E.I. Sitalo, S.P. Kubrin, S. Matteppanavar, N. Sivasankara Reddy, J. Angadi, Observation of enhanced humidity sensing performance and structure, dielectric, optical and DC conductivity studies of scandium doped cobalt chromate. J. Mater. Sci. Mater. Electron. 30, 17202–17217 (2019)

    Article  CAS  Google Scholar 

  27. P. Samoila, T. Slatineanu, P. Postolache, A.R. Iordan, M.N. Palamaru, The effect of chelating/combustion agent on catalytic activity and magnetic properties of Dy doped Ni–Zn ferrite. Mater. Chem. Phys. 136, 241–246 (2012)

    Article  CAS  Google Scholar 

  28. R. Sharma, S. Singhal, Structural, magnetic and electrical properties of zinc doped nickel ferrite and their application in photo catalytic degradation of methylene blue. Phys. B 414, 83–90 (2013)

    Article  ADS  CAS  Google Scholar 

  29. F. Tudorache, I. Petrila, K. Popa, A.M. Catargiu, Electrical properties and humidity sensor characteristics of lead hydroxyapatite material. Appl. Surf. Sci. 303, 175–179 (2014)

    Article  ADS  CAS  Google Scholar 

  30. F. Tudorache, I. Petrila, P.D. Popa, S. Tascu, Influence of thermal treatment on the structure, humidity sensitivity, electrical and magnetic properties of barium–tungsten ferrite. Compos. B Eng. 51, 106–111 (2013)

    Article  CAS  Google Scholar 

  31. I. Petrilaa, F. Tudorache, Effects of sintering temperature on the microstructure, electrical and magnetic characteristics of copper-zinc spinel ferrite with possibility use as humidity sensors. Sens. Actuators: Phys. 332, 113060 (2021)

    Article  Google Scholar 

  32. F. Tudorache, Investigations on microstructure, electrical and magnetic properties of copper spinel ferrite with WO3 addition for applications in the humidity sensors, superlattices and microstructures. Res Data Policy Data Availab Statements 116, 131e140 (2018)

    Google Scholar 

  33. M.-K. Ho, H.-H. Chiu, T.-E. Hsu, B. Chethan, S.-L. Yu, C.-Y. Jheng, C.-E. Chin, R. Selvam, C.-L. Cheng, H. Nagabhushana, K. Manjunatha, Advancing humidity sensing and magnetocaloric properties of spinel structural CoCr2O4 nanoparticles achieved via innovative bismuth doping by combustion synthesis. Mater. Today Chem. 35, 101907 (2024). https://doi.org/10.1016/j.mtchem.2024.101907

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their sincere appreciation to the Researchers Supporting Project number (RSPD2024R682), King Saud University, Riyadh, Saudi Arabia for the support.

Funding

This study was supported by Researchers Supporting Project number (RSPD2024R682), King Saud University, Riyadh Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

JAV: Conceptualization, Methodology, Software and Writing—Original Draft preparation and editing, KA: Analysis, NL: Analysis, AHH: Editing, NB: Editing, Conceptualization.

Corresponding authors

Correspondence to V. Jagadeesha Angadi or Mohd Ubaidullah.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angadi, V.J., Abdulvakhidov, K., Lyanguzov, N. et al. Cerium doped cobalt chromate for resistive and capacitive humidity sensor applications. J Mater Sci: Mater Electron 35, 420 (2024). https://doi.org/10.1007/s10854-024-12107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12107-4

Navigation