Skip to main content
Log in

X-ray Photoelectron Spectroscopy, Raman and Humidity Sensing Properties of Sm3+ Doped CoCr2O4 for Humidity Sensor Applications

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This research presents the structural, microstructural, Raman, XPS and humidity sensing behaviour of Sm3+ doped cobalt chromite (CoCr2O4). All samples are synthesized using solution combustion method with urea and glucose as fuels. The X-ray diffraction analysis confirms the single-phase formation with a spinel cubic structure. Field emission scanning electron microscopy micrographs revealed that the materials are porous and include soft agglomerations. Elemental analysis was performed using Energy-dispersive X-ray spectroscopy analysis, confirming the presence of Samarium (3+) in the Sm3+ doped CoCr2O4 samples. The oxidation state of each element was determined using X-ray photoelectron spectroscopy (XPS) for CoCr1.98Sm0.02O4 samples. The vibration bands identified by the Raman spectra confirm the formation of the spinel cubic structure. The electrical properties were measured by using an LCR meter, and it was observed that smaller crystallite size exhibits higher dielectric constant. All the electrical properties were found to increase with increasing samarium concentration. In humid conditions, this material’s resistance to electricity and permittivity and permittivity changes with frequency, making it useful as a capacitive and resistive humidity sensor. The findings of this work pave the way for the use of metal-doped magnetic chromites in applications for humidity sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. The data that support the findings of this study are not openly available due to unpublished this work anywhere and are available from the corresponding author upon reasonable request

References

  1. S.N. Patil, A.M. Pawar, S.K. Tilekar, B.P. Ladgaonkar, Investigation of magnesium substituted nano particle zinc ferrites for relative humidity sensors. Sens. Actuators A 244, 35–43 (2016)

    Article  CAS  Google Scholar 

  2. M.A. Ateia, E.E. Ateia, M. Mosry, Arman synthesis and characterization of non-stoichiometric Li1.1Co0.3Fe2.1O4 ferrite nanoparticles for humidity sensors. Appl. Phys. A 128, 884 (2022)

    Article  CAS  Google Scholar 

  3. N.A. Roslan, A.A. Bakar, T.M. Bawazeer, M.S. Alsoufi, N. Alsenany, W.H.A. Majid, A. Supangat, Enhancing the performance of vanadyl phthalocyanine-based humidity sensor by varying the thickness. Sens. Actuators B: Chem. 279, 148–156 (2019)

    Article  CAS  Google Scholar 

  4. V. Manikandan, S. Sikarwar, B.C. Yadav, S. Vigneselvan, R.S. Mane, J. Chandrasekaran, A. Mirzaei, Rapid humidity sensing activities of lithium substituted copper-ferrite (Li–CuFe2O4) thin flms. Mater. Chem. Phys. 229, 448–452 (2019)

    Article  CAS  Google Scholar 

  5. H. Moustafa, M. Morsy, M.A. Ateia, F.M. Abdel-Haleem, Ultrafast response humidity sensors based on polyvinyl chloride/graphene oxide nanocomposites for intelligent food packaging. Sens. Actuators A 331, 112918 (2021)

    Article  CAS  Google Scholar 

  6. S. Panda, H. Jeong, S. Hajra, P.M. Rajaitha, S. Hong, H. Joon Kim, Biocompatible polydopamine based triboelectric nanogenerator for humidity sensing. Sens. Actuators B Chem. 394, 134384 (2023)

    Article  CAS  Google Scholar 

  7. R. Jang, S. Hajra, R. Sahu, H. Joon Kim, Heated quartz crystal microbalance with highly controlled integration of ZIF-67 for ultra-reliable humidity sensing. Sens. Actuators B Chem. 396, 134589 (2023)

    Article  CAS  Google Scholar 

  8. L. Xu, H. Zhai, X. Chen, Y. Liu, M. Wang, Z. Liu, M. Umar, C. Ji, Z. Chen, L. Jin, Z. Liu, Q. Song, P. Yue, Y. Li, T.T. Ye, Coolmax/graphene-oxide functionalized textile humidity sensor with ultrafast response for human activities monitoring. Chem. Eng. J. 412, 128639 (2021)

    Article  CAS  Google Scholar 

  9. M. Velumani, S.R. Meher, Z.C. Alex, Composite metal oxide thin film based impedometric humidity sensors. Sens. Actuators B: Chem. 301, 127084 (2019)

    Article  CAS  Google Scholar 

  10. S. Yu, H. Zhang, C. Chen, C. Lin, Investigation of humidity sensor based on au modifed ZnO nanosheets via hydrothermal method and fiirst principle. Sens. Actuators B: Chem. 287, 526–534 (2019)

    Article  CAS  Google Scholar 

  11. R. Cheruku, G. Govindaraj, L. Vijayan, Super-linear frequency dependence of ac conductivity in nanocrystalline lithium ferrite. Mater. Chem. Phys. 146, 389–398 (2014)

    Article  CAS  Google Scholar 

  12. K. Manjunatha, V.J. Angadi, R. Rajaramakrishna, U.M. Pasha, Role of 5 mol% Mg–Ni on the structuraland magnetic properties of cobalt chromates crystallites prepared by solution combustion technique. J. Supercond. Nov. Magn. 33, 2861–2866 (2020)

    Article  CAS  Google Scholar 

  13. K. Manjunatha, V.J. Angadi, K.M. Srini-vasamurthy, S. Matteppanavar, V.K. Pattar, U.M. Pasha, Exploring the structural, dielectric and magneticproperties of 5 Mol% Bi-substituted CoCr2O4 nanoparticles. J. Supercond. Nov. Magn. 33, 1747–1757 (2020)

    Article  CAS  Google Scholar 

  14. I. Petrila, F. Tudorache, S. Tascu, Micromagnetic investiga-tion of all-optical switching. Phys. Lett. A 377, 1495–1498 (2013)

    Article  CAS  Google Scholar 

  15. I. Petrila, V. Manta, Metropolis Monte Carlo analysis of all-optical switching. Comput. Phys. Commun. 185, 2874–2878 (2014)

    Article  CAS  Google Scholar 

  16. I. Petrila, F. Ungureanu, V. Manta, Effects of laser beammodulation on all-optical switching phase diagrams in magneto-optical ultrafast storage device. J. Comput. Electron. 14, 627–633 (2015)

    Article  CAS  Google Scholar 

  17. K.K. Bharathi, J.A. Chelvane, G. Markandeyulu, Magneto-electric properties of Gd and Nd-doped nickel ferrite. J. Magn. Magn. Mater. 321, 3677–3680 (2009)

    Article  Google Scholar 

  18. F. Tudorache, I. Petrila, Effects of partial replacement of Ironwith tungsten on microstructure, electrical, magnetic andhumidity properties of copper–zinc ferrite material. J. Electron Mater. 43, 3522–3526 (2014)

    Article  CAS  Google Scholar 

  19. K. Wu, Y. Lu, Y. Liu, Y. Liu, M. Shen, M. Debliquy, C. Zhang, Synthesis and acetone sensing properties of copper(Cu2?) substituted zinc ferrite hollow micro-nanospheres. Ceram. Int. 46(18), 28835–28843 (2020)

    Article  CAS  Google Scholar 

  20. K. Manjunatha, K.M. Srininivasamurthy, C.S. Naveen, Y.T. Ravikiran, E.I. Sitalo, S.P. Kubrin, S. Matteppanavar, N. Sivasankara Reddy, V. Jagadeesha Angadi, Observation of enhanced humidity sensing performance and structure, dielectric, optical and DC conductivity studies of scandium doped cobalt chromate. J. Mater. Sci. Mater. Electron. 30, 17202–17217 (2019)

    Article  CAS  Google Scholar 

  21. S. Pratibha, B. Chethan, Y.T. Ravikiran, N. Dhananjaya, V. Jagadeesh Angadi, Enhanced humidity sensing performance of samarium doped lanthanum aluminate at room temperature. Sens. Actuators Phys. 304, 111903 (2020)

    Article  CAS  Google Scholar 

  22. F. Falsafi, B. Hashemi, A. Mirzaei, E. Fazio, F. Neri, N. Donato, S.G. Leonardi, G. Neri, Sm-doped cobalt ferrite nanoparticles: a novel sensing material for conductometric hydrogen leak sensor. Ceram. Int. 43, 1029–1037 (2017)

    Article  CAS  Google Scholar 

  23. S. Pratibha, N. Dhananjaya, A. Pasha, S. Khasim, Improved luminescence and LPG sensing properties of Sm3+-doped lanthanum aluminate thin films. Appl. Nanosci. 10, 1927–1939 (2020)

    Article  CAS  Google Scholar 

  24. I. Petrila, F. Tudorache, Influence of partial substitution ofFe3? with W3? on the microstructure, humidity sensitivity, magnetic and electrical properties of barium hexaferrite. Superlattices Microstruct. 70, 46–53 (2014)

    Article  CAS  Google Scholar 

  25. K. Manjunatha, V. Jagadeesha Angadi, R.A.P. Ribeiro, M.C. Oliveira, S.R. La Zaro, M.R.D. Bomio, S. Matteppanavar, S. Rayaprol, P.D. Babu, U. Mahaboob Pasha, Structural, electronic and magnetic properties of Sc3? doped CoCr2O4 nanoparticles. New J. Chem. 44, 14246–14255 (2020)

    Article  CAS  Google Scholar 

  26. P.R. Mandal, R. Singh, A. Das, T. Sarkar, T.K. Nath, Enhanced magnetodielectric response in Dy modified NiCr2-O4. J. Magn. Magn. Mater. 432, 49–55 (2017)

    Article  CAS  Google Scholar 

  27. D. Kumar, K. Nemkovski, Y. Su, C. Rath, Enhancement of Curie- and spin-spiral temperatures with doping Fe in multiferroic CoCr2O4 nanoparticles. J. Magn. Magn. Mater. 488, 165378 (2019)

    Article  CAS  Google Scholar 

  28. A.K. Jaiswal, S. Sikarwar, S. Singh et al., Fabrication of nanostructured magnesium ferrite polyhedronsand their applications in heat transfer management and gas/humidity sensors. J. Mater. Sci.: Mater. Electron. 31, 80–89 (2020)

    CAS  Google Scholar 

  29. R. Qi et al., Capacitive humidity sensors based on mesoporous silica and poly (3,4-ethylenedioxythiophene) composites. J. Colloid Interface Sci. 565, 592–600 (2020)

    Article  CAS  PubMed  Google Scholar 

  30. G. Hassan, M. Sajid, C. Choi, Highly sensitive and full range detectable humidity sensor using PEDOT:PSS, methyl red and graphene oxide materials. Sci. Rep. 9, 15227 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  31. H. Niu et al., Ultrafast-response/recovery capacitive humidity sensor based on arc-shaped hollow structure with nanocone arrays for human physiological signals monitoring. Sens. Actuators B Chem. 334, 129637 (2021)

    Article  CAS  Google Scholar 

  32. D. Toloman, A. Popa, M. Stan et al., Reduced graphene oxide decorated with Fe doped SnO2nano-particles for humidity sensor. Appl. Surf. Sci. 402, 410–417 (2017)

    Article  CAS  Google Scholar 

  33. Z. Duan et al., Daily writing carbon ink: novel application on humidity sensor with wide detection range, low detection limit and high detection resolution. Sens. Actuators B Chem. 339, 129884 (2021)

    Article  CAS  Google Scholar 

  34. T. Qiang et al., High-performance porous MIM-type capacitive humidity sensor realized via inductive coupled plasma and reactive-ion etching. Sens. Actuators B Chem. 258, 704–714 (2018)

    Article  CAS  Google Scholar 

  35. S. Li et al., Flexible highly-sensitive humidity sensor based on CGO/SMPLAF for wearable human skin humidity detection. Sens. Actuators B Chem. 362, 131806 (2022)

    Article  CAS  Google Scholar 

  36. Y. Oh, M. Sahu, S. Hajra, A. Manjari Padhan, S. Panda, H. Joon Kim, Spinel ferrites (CoFe2O4): synthesis, magnetic properties, and electromagnetic generator for vibration energy harvesting. J. Electron. Mater. 51, 1933–1939 (2022)

    Article  CAS  Google Scholar 

  37. D.P. Dutta, J. Manjanna, A.K. Tyagi, Magnetic properties of sonochemically synthesized CoCr2O4 nanoparticles. J. Appl. Phys. 106, 043915 (2009)

    Article  Google Scholar 

  38. N. Betancur-Granados, O.J. Restrepo-Baena, Flame spray pyrolysis synthesis of ceramic nanopigments CoCr2O4: the effect of key variables. J. Eur. Ceram. Soc. 37, 5051–5056 (2017)

    Article  CAS  Google Scholar 

  39. K. Manjunatha, V.J. Angadi, R.A. Ribeiro, E. Longo, M.C. Oliveira, M.R. Bomio, S.R. de Lazaro, S.R. Matteppanavar, S. Rayaprol, P.D. Babu, M. Pasha, Structural, electronic, vibrational and magnetic properties of Zn2+ substituted MnCr2O4 nanoparticles. J. Magn. Magn. Mater. 502, 166595 (2020)

    Article  CAS  Google Scholar 

  40. V. Jagadeesha Angadi, K. Manjunatha, K. Praveena, V.K. Pattar, B.J. Fernandes, S.O. Manjunatha, J. Husain, S.V. Angadi, L.D. Horakeri, K.P. Ramesh, Magnetic properties of larger ionic radii samarium and gadalonium doped manganese zinc ferrite nanoparticles prepared by solution combustion method. J. Magn. Magn. Mater. 529, 167899 (2021)

    Article  CAS  Google Scholar 

  41. P. Choudhary, P. Saxena, A. Yadav, V.N. Rai, A. Mishra, Dielectric and ferroelectric properties of CoCr2O4 nanoceramics. J. Adv. Dielectr. 9, 1950015 (2019)

    Article  CAS  Google Scholar 

  42. K. Manjunatha, V.J. Angadi, B.J. Fernandes, K.P. Ramesh, Synthesis and study of structural and dielectric properties of Dy-Ho doped Mn–Zn ferrite nanoparticles, ferrite (Intech Open publishers, London, 2021). https://doi.org/10.5772/intechopen.99264

    Book  Google Scholar 

  43. S. Kalasina, K. Kongsawatvoragul, N. Phattharasupakun, P. Phattharaphuti, M. Sawangphruk, Cobalt oxysulphide/hydroxide nanosheets with dual properties based on electrochromism and a charge storage mechanism. RSC Adv. 10, 14154 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. J. Słoczyński, J. Janas, T. Machej, J. Rynkowski, J. Stoch, Catalytic activity of chromium spinels in SCR of NO with NH3. Appl. Catal. B-Environ. 24, 45–60 (2000)

    Article  Google Scholar 

  45. N.D. Vinh, P.M. Tan, P.V. Do, S. Bharti, V.X. Hoa, N.T. Hien, N.T. Luyen, N.X. Ca, Effect of dopant concentration and the role of ZnS shell on optical properties of Sm3 + doped CdS quantum dots. RSC Adv. 11, 7961–7971 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. V. Jagadeesha Angadi, K. Manjunatha, M. Akyol, A. Ekicibil, S. Matteppanavar, A.V. Pavlenko, S.P. Kubrin, Temperature-dependent dielectric and magnetic properties of scandium-substituted HoFeO3 nanoparticles. J. Supercond. Nov. Magn. 33, 3525–3534 (2020)

    Article  Google Scholar 

  47. S. Pavithradevi, N. Suriyanarayanan, T. Boobalan, Synthesis, structural, dielectric and magnetic properties of polyol assisted copper ferrite nano particles. J. Magn. Magn. Mater. 426, 137–143 (2017)

    Article  CAS  Google Scholar 

  48. K. Ali, J. Iqbal, T. Jan, I. Ahmad, D. Wan, I. Ahmad, Influence of NiO concentration on structural, dielectric and magnetic properties of core/shell CuFe2O4/NiO nanocomposites. Mater. Chem. Phys. 195, 283–294 (2017)

    Article  CAS  Google Scholar 

  49. P. Samoila, T. Slatineanu, P. Postolache, A.R. Iordan, M.N. Palamaru, The effect of chelating/combustion agent on catalytic activity and magnetic properties of Dy doped Ni–Zn ferrite. Mater. Chem. Phys. 136, 241–246 (2012)

    Article  CAS  Google Scholar 

  50. R. Sharma, S. Singhal, Structural, magnetic and electrical properties of zinc doped nickel ferrite and their application in photo catalytic degradation of methylene blue. Phys. B 414, 83–90 (2013)

    Article  CAS  Google Scholar 

  51. M.S.R. Prasad, B. Prasad, B. Rajesh, K.H. Rao, K.V. Ramesh, Magnetic properties and DC electrical resistivity studies on cadmium substituted nickel–zinc ferrite system. J. Magn. Magn. Mater. 323, 2115–2121 (2011)

    Article  Google Scholar 

  52. F. Tudorache, Investigations on microstructure, electrical and magnetic properties of copper spinel ferrite with WO3 addition for applications in the humidity sensors. Superlattices Microstruct. 116, 131–140 (2018)

    Article  CAS  Google Scholar 

  53. F. Tudorache, I. Petrila, P.D. Popa, S. Tascu, Influence of thermal treatment on the structure, humidity sensitivity, electrical and magnetic properties of barium–tungsten ferrite. Compos. B Eng. 51, 106–111 (2013)

    Article  CAS  Google Scholar 

  54. F. Tudorache, I. Petrila, K. Popa, A.M. Catargiu, Electrical properties andhumidity sensor characteristics of lead hydroxyapatite material. Appl. Surf. Sci. 303, 175–179 (2014)

    Article  CAS  Google Scholar 

  55. W.D. Kingery, Introduction to Ceramics (Wiley, New York, 1976), pp. 78–79

Download references

Acknowledgements

The authors extend their sincere appreciation to the Researchers Supporting Project number RSP2023R55, King Saud University, Riyadh, Saudi Arabia for the support. We want to thank the National of Science and Technology Council (NSTC) of the Republic of China for the financial support through grant numbers NSTC-111-2112-M-259-009, NSTC-111-2112-M-259-013, NSTC-111-2112-M-259-014, NSTC-112-2811-M-259-012, and NSTC-112-2112-M-259-017.

Funding

This study was supported by Researchers Supporting Project number (RSP2023R55), King Saud University, Riyadh Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

VJA: Conceptualization, Methodology, Software and Writing—Original draft preparation. KM: Analysis. M-KH: Measurements of XPS. SY: Analysis. MU: Editing. AMA-E: Analysis of humidity.  BP: Editing: Analysis. CB: Humidity measurement.

Corresponding author

Correspondence to V. Jagadeesha Angadi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagadeesha Angadi, V., Manjunatha, K., Ho, MK. et al. X-ray Photoelectron Spectroscopy, Raman and Humidity Sensing Properties of Sm3+ Doped CoCr2O4 for Humidity Sensor Applications. J Inorg Organomet Polym 34, 1712–1724 (2024). https://doi.org/10.1007/s10904-023-02912-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02912-5

Keywords

Navigation