Skip to main content
Log in

GLAD synthesized ZnO nanoparticles decorated CuO thin film for high performance UV detection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO nanoparticles (NPs) (0-D) were decorated on the surface of Cu2O thin film (TF) (2-D) by using a catalytic free and well-controlled technique called glancing angle deposition (GLAD). A complete phase transformation from Cu2O to CuO and enhancement in ZnO crystallinity was observed after annealing ZnO NPs/Cu2O TF in air at 400 °C. The photodetector (PD) based on ZnO NPs/CuO TF showed good photoelectric parameters in ultraviolet (UV) and also in visible regions. The fabricated PD showed a low dark current of ~ 9.30 nA at − 1 V applied bias and a high photoresponse of ~ 20 due to enhanced built-in potential between the 0-D ZnO NPs on the surface of 2-D CuO TF. Moreover, the PD showed a high responsivity (Rλ) of ~ 3.11 A/W, detectivity (D*) of ~ 4.97 × 1012 Jones and NEP as low as ~ 6.75 × 10–13 W under UV-C light. Furthermore, the device showed a stable and fast device response with rise and fall times of 1.85 ms and 2.59 ms respectivily. Thus, the fabricated ZnO NPs/CuO TF device can be a suitable applicant for the next-generation optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. A.T. Nomaan, A.A. Ahmed, N.M. Ahmed, M.I. Idris, M.R. Hashim, M. Rashida, ZnO quantum dot based thin films as promising electron transport layer: Influence of surface-to-volume ratio on the photoelectric properties. Ceram. Int. 47(9), 12397–12409 (2021). https://doi.org/10.1016/j.ceramint.2021.01.094

    Article  CAS  Google Scholar 

  2. Z. Yuan, H. Wu, W. Wang, F. Nie, J. He, A fast-response and transparent solution–processed ultraviolet photodetector based on ZnO quantum–sized nanoparticles. J. Nanopart. Res. (2020). https://doi.org/10.1007/s11051-020-05056-6

    Article  Google Scholar 

  3. Y. Kumar, H. Kumar, G. Rawat, C. Kumar, B.N. Pal, S. Jit, Spectrum selectivity and responsivity of ZnO nanoparticles coated Ag/ZnO QDs/Ag UV photodetectors. IEEE Photonics Technol. Lett. 30(12), 1147–1150 (2018). https://doi.org/10.1109/LPT.2018.2836978

    Article  ADS  CAS  Google Scholar 

  4. Y. Chen, Y. Wu, J. Ben, K. Jiang, Y. Jia, S. Zhang, H. Zang, Z. Shi, B. Duan, X. Sun, D. Li, A high-response ultraviolet photodetector by integrating GaN nanoparticles with grapheme. J. Alloy. Compd. 868, 159281 (2021). https://doi.org/10.1016/j.jallcom.2021.159281

    Article  CAS  Google Scholar 

  5. W. Zheng, Y. Dong, T. Li, J. Chen, X. Chen, Y. Dai, G. He, MgO blocking layer induced highly UV responsive TiO2 nanoparticles based self-powered photodetectors. J. Alloy. Compd. 869, 159299 (2021). https://doi.org/10.1016/j.jallcom.2021.159299

    Article  CAS  Google Scholar 

  6. K. Ozel, A. Yildiz, A self-powered ultraviolet photodetector with ultrahigh photoresponsivity (208 mA W− 1) based on SnO2 nanostructures/Si heterojunctions. Physica Status Solidi Rapid Res. Lett. 15(6), 2100085 (2021)

    Article  ADS  CAS  Google Scholar 

  7. S. Kunwar, S. Pandit, R. Kulkarni, R. Mandavkar, S. Lin, M.Y. Li, J. Lee, Hybrid device architecture using plasmonic nanoparticles, graphene quantum dots, and titanium dioxide for UV photodetectors. ACS Appl. Mater. Interfaces 13(2), 3408–3418 (2021). https://doi.org/10.1021/acsami.0c19058

    Article  CAS  PubMed  Google Scholar 

  8. Q. Liu, M. Gong, B. Cook, P. Thapa, D. Ewing, M. Casper, A. Stramel, J. Wu, Oxygen plasma surface activation of electron-depleted ZnO nanoparticle films for performance-enhanced ultraviolet photodetectors. Phys. Status Solidi 214(11), 1700176 (2017). https://doi.org/10.1002/pssa.201700176

    Article  ADS  CAS  Google Scholar 

  9. J.D. Hwang, W.M. Lin, Enhancing the photoresponse of p-NiO/n-ZnO heterojunction photodiodes using post ZnO treatment. IEEE Trans. Nanotechnol. 18, 126–131 (2018). https://doi.org/10.1109/TNANO.2018.2884936

    Article  ADS  Google Scholar 

  10. M. Mishra, A. Gundimeda, T. Garg, A. Dash, S. Das, G. Gupta, ZnO/GaN heterojunction based self-powered photodetectors: influence of interfacial states on UV sensing. Appl. Surf. Sci. 478, 1081–1089 (2019). https://doi.org/10.1016/j.apsusc.2019.01.192

    Article  ADS  CAS  Google Scholar 

  11. X. Fei, D. Jiang, M. Zhao, Gaining effect of flower-like ZnO nanowire arrays on the responsivity performance of Cu2O/ZnO heterojunction photodetector. J. Lumin. 254, 119477 (2023). https://doi.org/10.1016/j.jlumin.2022.119477

    Article  CAS  Google Scholar 

  12. D.T. Nguyen, M.D. Tran, T. Van Hoang, D.T. Trinh, D.T. Pham, D.L. Nguyen, Experimental and numerical study on photocatalytic activity of the ZnO nanorods/CuO composite film. Sci. Rep. 10(1), 7792 (2020). https://doi.org/10.1038/s41598-020-64784-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. D. Somvanshi, S. Jit, Analysis of temperature-dependent electrical characteristics of n-ZnO nanowires (NWs)/p-Si heterojunction diodes. IEEE Trans. Nanotechnol. 13(1), 62–69 (2014). https://doi.org/10.1109/TNANO.2013.2290553

    Article  ADS  CAS  Google Scholar 

  14. Y. Ma, L. Dong, P. Li, L. Hu, B. Lu, Y. Miao, B. Peng, A. Tian, W. Liu, First-principles-based quantum transport simulations of high-performance and low-power MOSFETs based on monolayer Ga2O3. ACS Appl. Mater. Interfaces 14(42), 48220–48228 (2022). https://doi.org/10.1021/acsami.2c12266

    Article  CAS  PubMed  Google Scholar 

  15. K. Ozel, A. Yildiz, A self-powered ultraviolet photodetector with ultrahigh photoresponsivity (208 mA W−1) based on SnO2 nanostructures/Si heterojunctions. Physica Status Solidi Rapid Res. Lett. 15(6), 2100085 (2021). https://doi.org/10.1002/pssr.202100085

    Article  ADS  CAS  Google Scholar 

  16. A. Kumar, P.K. Gupta, M. Srivastava, A. Pandey, A. Srivastava, S.K. Srivastava, A highly sensitive Ag/MG-CQDs/ZnO NP ultraviolet photodetector. IEEE Sens. J. 22(22), 21635–21641 (2022). https://doi.org/10.1109/JSEN.2022.3211846

    Article  ADS  CAS  Google Scholar 

  17. N. Alwadai, S. Mitra, M.N. Hedhili, H. Alamoudi, B. Xin, N. Alaal, I.S. Roqan, Enhanced-performance self-powered solar-blind UV-C photodetector based on n-ZnO quantum dots functionalized by p-CuO micro-pyramids. ACS Appl. Mater. Interfaces 13(8), 33335–33344 (2021). https://doi.org/10.1021/acsami.1c03424

    Article  CAS  PubMed  Google Scholar 

  18. A.P. Singh, S. Jit, Solution processed ITO/ZnO QDs/TIPS-pentacene/MoOx high-performance UV-visible photodetector. IEEE Photonics Technol. Lett. 34(19), 1034–1037 (2022). https://doi.org/10.1109/LPT.2022.3199500

    Article  ADS  CAS  Google Scholar 

  19. H.C. Wang, Y. Hong, Z. Chen, C. Lao, Y. Lu, Z. Yang, Y. Zhu, X. Liu, ZnO UV photodetectors modified by Ag nanoparticles using all-inkjet-printing. Nanoscale Res. Lett. 15(176), 1–8 (2020). https://doi.org/10.1186/s11671-020-03405-x

    Article  ADS  CAS  Google Scholar 

  20. Y. Lin, J. Zou, W. Wang, X. Liu, J. Gao, Z. Lu, High-performance self-powered ultraviolet photodetector based on PEDOT: PSS/CuO/ZnO nanorod array sandwich structure. Appl. Surf. Sci. 599, 153956 (2022). https://doi.org/10.1016/j.apsusc.2022.153956

    Article  CAS  Google Scholar 

  21. S. Daimary, P. Chetri, J.C. Dhar, High performance UV-A detector using axial n-ZnO/p-CuO p-n junction heterostructure nanowire arrays. IEEE Electron Device Lett. 43(6), 898–901 (2022). https://doi.org/10.1109/LED.2022.3169060

    Article  ADS  CAS  Google Scholar 

  22. P. Ghamgosar, F. Rigoni, S. You, I. Dobryden, M.G. Kohan, A.L. Pellegrino, I. Concina, N. Almqvist, G. Malandrino, A. Vomiero, ZnO-Cu2O core-shell nanowires as stable and fast response photodetectors. Nano Energy 51, 308–316 (2018). https://doi.org/10.1016/j.nanoen.2018.06.058

    Article  CAS  Google Scholar 

  23. L.D.L.S. Valladares, D.H. Salinas, A.B. Dominguez, D.A. Najarro, S.I. Khondaker, T. Mitrelias, C.H.W. Barnes, J.A. Aguiar, Y. Majima, Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates. Thin Solid Films 520(20), 6368–6374 (2012). https://doi.org/10.1016/j.tsf.2012.06.043

    Article  ADS  CAS  Google Scholar 

  24. W.J. Lee, X.J. Wang, Structural, optical, and electrical properties of copper oxide films grown by the silar method with post-annealing. Coatings 11(7), 864 (2021). https://doi.org/10.3390/coatings11070864

    Article  CAS  Google Scholar 

  25. S. Korkmaz, B. Gecici, S.D. Korkmaz, R. Mohammadigharehbagh, S. Pat, S. Ozen, V. Şenay, H.H. Yudar, Morphology, composition, structure and optical properties of CuO/Cu2O thin films prepared by RF sputtering method. Vacuum 131, 142–146 (2016). https://doi.org/10.1016/j.vacuum.2016.06.010

    Article  ADS  CAS  Google Scholar 

  26. S.K. Kumar, S. Murugesan, S. Suresh, S.P. Raj, Nanostructured CuO thin films prepared through sputtering for solar selective absorbers. J. Solar Energy (2013). https://doi.org/10.1155/2013/147270

    Article  Google Scholar 

  27. S. Jamali, A. Moshaii, N. Mohammadian, Improvement of photoelectrochemical and stability properties of electrodeposited Cu2O thin films by annealing processes. Physica Status Solidi (a) 214(12), 1700380 (2017). https://doi.org/10.1002/pssa.201700380

    Article  ADS  CAS  Google Scholar 

  28. A. Costas, C. Florica, N. Preda, A. Kuncser, I. Enculescu, Photodetecting properties of single CuO–ZnO core–shell nanowires with p–n radial heterojunction. Sci. Rep. 10(1), 1–12 (2020). https://doi.org/10.1038/s41598-020-74963-4

    Article  CAS  Google Scholar 

  29. X. Li, D. Yu, J. Chen, Y. Wang, F. Cao, Y. Wei, Y. Wu, L. Wang, Y. Zhu, Z. Sun, J. Ji, Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity. ACS Nano 11(2), 2015–2023 (2017). https://doi.org/10.1021/acsnano.6b08194

    Article  CAS  PubMed  Google Scholar 

  30. H.H. Radamson, A. Hallén, I. Sychugov, A. Azarov, Analytical methods and instruments for micro-and nanomaterials (Springer, Berlin, 2023)

    Book  Google Scholar 

  31. R. Rajkumari, N.K. Singh, Effect of annealing on the structural and electrical properties of GLAD synthesized vertical aligned WO 3 nanowire. IEEE Trans. Nanotechnol. 18, 676–683 (2019). https://doi.org/10.1109/TNANO.2019.2927367

    Article  ADS  CAS  Google Scholar 

  32. S. Morawiec, M.J. Mendes, F. Priolo, I. Crupi, Plasmonic nanostructures for light trapping in thin-film solar cells. Mater. Sci. Semicond. Process. 92, 10–18 (2019). https://doi.org/10.1016/j.mssp.2018.04.035

    Article  CAS  Google Scholar 

  33. K. Iqbal, M. Ikram, M. Afzal, S. Ali, Efficient, low-dimensional nanocomposite bilayer CuO/ZnO solar cell at various annealing temperatures. Mater. Renew. Sustain. Energy 7, 1–7 (2018). https://doi.org/10.1007/s40243-018-0111-2

    Article  Google Scholar 

  34. Z. Bai, Y. Zhang, Self-powered UV–visible photodetectors based on ZnO/Cu2O nanowire/electrolyte heterojunctions. J. Alloy. Compd. 675, 325–330 (2016). https://doi.org/10.1016/j.jallcom.2016.03.051

    Article  CAS  Google Scholar 

  35. A. Zainelabdin, S. Zaman, G. Amin, O. Nur, M. Willander, Optical and current transport properties of CuO/ZnO nanocoral p–n heterostructure hydrothermally synthesized at low temperature. Appl. Phys. A 108, 921–928 (2012). https://doi.org/10.1007/s00339-012-6995-2

    Article  ADS  CAS  Google Scholar 

  36. S. Daimary, J.C. Dhar, Ultrafast photoresponse using axial n-ZnO/p-CuO heterostructure nanowires array-based photodetectors. IEEE Trans. Electron Devices 69, 3768–3774 (2022). https://doi.org/10.1109/TED.2022.3175705

    Article  ADS  CAS  Google Scholar 

  37. F. Moutai, M. Elyaagoubi, A. Afkir, R. Rochdi, A. El Boujlaidi, N. Rochdi, Effect of oxygen pressure and post-annealing on the properties of reactively sputtered zinc oxide thin films. Mater. Today Proc. 39(1163), 1169 (2021). https://doi.org/10.1016/j.matpr.2020.07.607

    Article  CAS  Google Scholar 

  38. D.S. Murali, S. Kumar, R.J. Choudhary, A.D. Wadikar, M.K. Jain, A. Subrahmanyam, Synthesis of Cu2O from CuO thin films: optical and electrical properties. AIP Adv. 5(4), 047143 (2015). https://doi.org/10.1063/1.4919323

    Article  ADS  CAS  Google Scholar 

  39. C.I. Kuan, H.C. Lin, P.W. Li, Improving the performance of ZnO thin-film transistors with ZnON source/drain contacts. IEEE Trans. Electron Devices 64(7), 2849–2853 (2017). https://doi.org/10.1109/TED.2017.2704440

    Article  ADS  CAS  Google Scholar 

  40. P. Gu, X. Zhu, D. Yang, Effect of annealing temperature on the performance of photoconductive ultraviolet detectors based on ZnO thin films. Appl. Phys. A 125, 1–8 (2019). https://doi.org/10.1007/s00339-018-2361-3

    Article  CAS  Google Scholar 

  41. L.L. Yang, Q.X. Zhao, M. Willander, J.H. Yang, I. Ivanov, Annealing effects on optical properties of low temperature grown ZnO nanorod arrays. J. Appl. Phys. 105(5), 053503 (2009). https://doi.org/10.1063/1.3073993

    Article  ADS  CAS  Google Scholar 

  42. D. Das, P. Mondal, Photoluminescence phenomena prevailing in c-axis oriented intrinsic ZnO thin films prepared by RF magnetron sputtering. RSC Adv. 4(67), 35735–35743 (2014). https://doi.org/10.1039/C4RA06063F

    Article  ADS  CAS  Google Scholar 

  43. S. Dagher, Y. Haik, A.I. Ayesh, N. Tit, Synthesis and optical properties of colloidal CuO nanoparticles. J. Lumin. 151, 149–154 (2014). https://doi.org/10.1016/j.jlumin.2014.02.015

    Article  CAS  Google Scholar 

  44. H.Z. Asl, S.M. Rozati, Photoluminescence and optical properties of CuO thin films deposited via spray pyrolysis influence of substrate temperature. Res. Square (2022). https://doi.org/10.21203/rs.3.rs-1796153/v1

    Article  Google Scholar 

  45. C. Samanta, A. Ghatak, A.K. Raychaudhuri, B. Ghosh, Surface/interface defect engineering on charge carrier transport toward broadband (UV-NIR) photoresponse in the heterostructure array of p-Si NWs/ZnO photodetector. ACS Appl. Electron. Mater. 5(2), 865–876 (2023). https://doi.org/10.1021/acsaelm.2c01431

    Article  CAS  Google Scholar 

  46. Y. Lv, J. Liu, Z. Zhang, W. Zhang, A. Wang, F. Tian, W. Zhao, J. Yan, Green synthesis of CuO nanoparticles-loaded ZnO nanowires arrays with enhanced photocatalytic activity. Mater. Chem. Phys. 267, 124703 (2021). https://doi.org/10.1016/j.matchemphys.2021.124703

    Article  CAS  Google Scholar 

  47. F. Chen, P. Zhang, L. Xiao, J. Liang, B. Zhang, H. Zhao, R. Kosol, Q. Ma, J. Chen, X. Peng, G. Yang, Structure–performance correlations over Cu/ZnO interface for low-temperature methanol synthesis from syngas containing CO2. ACS Appl. Mater. Interfaces 13(7), 8191–8205 (2021). https://doi.org/10.1021/acsami.0c18600

    Article  CAS  PubMed  Google Scholar 

  48. W. Wang, L. Xu, R. Zhang, J. Xu, F. Xian, J. Su, F. Yang, Coexistence of ferromagnetism and paramagnetism in ZnO/CuO nanocomposites. Chem. Phys. Lett. 721, 57–61 (2019). https://doi.org/10.1016/j.cplett.2019.02.031

    Article  ADS  CAS  Google Scholar 

  49. S. Raha, D. Mohanta, M. Ahmaruzzaman, Novel CuO/Mn3O4/ZnO nanocomposite with superior photocatalytic activity for removal of Rabeprazole from water. Sci. Rep. 11(1), 1–19 (2021). https://doi.org/10.1038/s41598-021-94066-y

    Article  CAS  Google Scholar 

  50. C. Wang, J. Xu, S. Shi, Y. Zhang, Y. Gao, Z. Liu, X. Zhang, L. Li, Optimizing performance of Cu2O/ZnO nanorods heterojunction based self-powered photodetector with ZnO seed layer. J. Phys. Chem. Solids 103, 218–223 (2017). https://doi.org/10.1016/j.jpcs.2016.12.026

    Article  ADS  CAS  Google Scholar 

  51. M.A. Khan, Y. Wahab, R. Muhammad, M. Tahir, S. Sakrani, Catalyst-free fabrication of novel ZnO/CuO core-Shell nanowires heterojunction: controlled growth, structural and optoelectronic properties. Appl. Surf. Sci. 435, 718–732 (2018). https://doi.org/10.1016/j.apsusc.2017.11.071

    Article  ADS  CAS  Google Scholar 

  52. M. Claros, M. Setka, Y.P. Jimenez, S. Vallejos, AACVD synthesis and characterization of iron and copper oxides modified ZnO structured films. Nanomaterials 10(3), 471 (2020). https://doi.org/10.3390/nano10030471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. M.A. Khan, N. Nayan, M.K. Ahmad, C.F. Soon, Surface study of CuO nanopetals by advanced nanocharacterization techniques with enhanced optical and catalytic properties. Nanomaterials 10(7), 1298 (2020). https://doi.org/10.3390/nano10071298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. J. Li, T. Zhao, M. Shirolkar, M. Li, H. Wang, H. Li, CuO/ZnO heterojunction nanorod arrays prepared by photochemical method with improved UV detecting performance. Nanomaterials 9(5), 790 (2019). https://doi.org/10.3390/nano9050790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. S. Demirezen, H.G. Cetinkaya, M. Kara, F. Yakuphanoglu, S. Altındal, Synthesis, electrical and photo-sensing characteristics of the Al/(PCBM/NiO: ZnO)/p-Si nanocomposite structures. Sens. Actuators A 317, 112449 (2021). https://doi.org/10.1016/j.sna.2020.112449

    Article  CAS  Google Scholar 

  56. S. Mridha, D. Basak, Ultraviolet and visible photoresponse properties of n-zn o∕ p-si heterojunction. J. Appl. Phys. 101(8), 083102 (2007). https://doi.org/10.1063/1.2724808

    Article  ADS  CAS  Google Scholar 

  57. K. Charipar, H. Kim, A. Pique, N. Charipar, ZnO nanoparticle/graphene hybrid photodetectors via laser fragmentation in liquid. Nanomaterials 10(9), 1648 (2020). https://doi.org/10.3390/nano10091648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. S. Liu, M.Y. Li, J. Zhang, D. Su, Z. Huang, S. Kunwar, J. Lee, Self-assembled Al nanostructure/ZnO quantum dot heterostructures for high responsivity and fast UV photodetector. Nano-micro Letters 12, 1–13 (2020). https://doi.org/10.1007/s40820-020-00455-9

    Article  CAS  Google Scholar 

  59. S.B. Wang, C.H. Hsiao, S.J. Chang, Z.Y. Jiao, S.J. Young, S.C. Hung, B.R. Huang, ZnO branched nanowires and the p-CuO/n-ZnO heterojunction nanostructured photodetector. IEEE Trans. Nanotechnol. 12(2), 263–269 (2013). https://doi.org/10.1109/TNANO.2013.2243916

    Article  ADS  CAS  Google Scholar 

  60. H.T. Hsueh, S.J. Chang, W.Y. Weng, C.L. Hsu, T.J. Hsueh, F.Y. Hung, S.L. Wu, B.T. Dai, Fabrication and characterization of coaxial p-copper oxide/n-ZnO nanowire photodiodes. IEEE Trans. Nanotechnol. 11(1), 127–133 (2012). https://doi.org/10.1109/TNANO.2011.2159620

    Article  ADS  Google Scholar 

  61. H.P. Lin, P.Y. Lin, D.C. Perng, Fast-response and self-powered Cu2O/ZnO nanorods heterojunction UV-visible (570 nm) photodetectors. J. Electrochem. Soc. 167(6), 067507 (2020). https://doi.org/10.1149/1945-7111/ab7e8e

    Article  ADS  CAS  Google Scholar 

  62. P. Deb, J.C. Dhar, Low dark current and high responsivity UV detector based on TiO2 nanowire/RGO thin film heterostructure. IEEE Trans. Electron Devices 66, 3874–3880 (2019). https://doi.org/10.1109/TED.2019.2926797

    Article  ADS  CAS  Google Scholar 

  63. M.S. Choi, T. Park, W.J. Kim, J. Hur, High-performance ultraviolet photodetector based on a zinc oxide nanoparticle@ single-walled carbon nanotube heterojunction hybrid film. Nanomaterials 10(2), 395 (2020). https://doi.org/10.3390/nano10020395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Z. Yuan, A photodiode with high rectification ratio and low turn-on voltage based on ZnO nanoparticles and SubPc planar heterojunction. Physica E Low Dimens. Syst. Nanostruct. 56, 160–164 (2014). https://doi.org/10.1016/j.physe.2013.09.001

    Article  ADS  CAS  Google Scholar 

  65. R.K. Upadhyay, S. Jit, Solution-processed ZnO nanoparticles (NPs)/CH3NH3PbI3/PTB7/MoO3/Ag inverted structure based UV–visible-near infrared (NIR) broadband photodetector. Opt. Mater. 135, 113290 (2023). https://doi.org/10.1016/j.optmat.2022.113290

    Article  CAS  Google Scholar 

  66. J. Yu, M. Yu, Z. Wang, L. Yuan, Y. Huang, L. Zhang, Y. Zhang, R. Jia, Improved photoresponse performance of self-powered β-Ga2O3/NiO heterojunction UV photodetector by surface plasmonic effect of Pt nanoparticles. IEEE Trans. Electron Devices 67(8), 3199–3204 (2020). https://doi.org/10.1109/TED.2020.2999027

    Article  ADS  CAS  Google Scholar 

  67. M. Zhou, H. Qiu, T. He, J. Zhang, W. Yang, S. Lu, L. Bian, Y. Zhao, UV photodetector based on vertical (Al, Ga) N nanowires with graphene electrode and Si substrate. Physica Status Solidi (a) 217(15), 2000061 (2020). https://doi.org/10.1002/pssa.202000061

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the SERB (DST) project (EMR/2017/001863), Govt. Of India for providing fabrication facilities and funding for this project. NCPRE, IIT Bombay and CSIR-NEIST Jorhat for FE-SEM and XPS analysis, India. The authors wish to thank Dr. David Singh, Department of Chemistry, NIT Manipur for PL and XRD analysis, NIT Nagaland for I-V characteristics and other facilities.

Funding

This work was funded by SERB Department Science and Technology, EMR/2017/001863.

Author information

Authors and Affiliations

Authors

Contributions

In the present work, each of the authors has contributed equally to the work. All the authors have provided their consent for the final version of the manuscript.

Corresponding author

Correspondence to Jay Chandra Dhar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5081 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daimary, S., Ashok, P. & Dhar, J.C. GLAD synthesized ZnO nanoparticles decorated CuO thin film for high performance UV detection. J Mater Sci: Mater Electron 35, 413 (2024). https://doi.org/10.1007/s10854-024-12194-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12194-3

Navigation