Skip to main content
Log in

Synthesis and characterization of Cu doped ZnO nanoparticles for stable and fast response UV photodetector at low noise current

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The rising demand for optoelectronic devices to be operable in adverse environments necessitates the sensing of ultraviolet (UV) radiation. Here, a highly sensitive, fast responding Cu doped zinc oxide nanoparticles (Nps) based UV photodetector (PD) is reported. For the first time, Cu doped ZnO Nps are grown via forced hydrolysis of acetate salt of metals in a polyol medium. Various characterization methods including X-Ray diffraction, high resolution transmission electron microscopy and Fourier infrared spectroscopy are used to testify the presence of Cu element in ZnO Nps, although the diffuse reflectance and PL characterization are used to study the optical properties. The performance of the PD has been established by photocurrent measurements under different power density. Our device exhibited good photoresponse under UV illumination (375 nm) at 1 V bias voltage. Furthermore, the response of the PD is much better than other detectors based on oxide semiconductors nanostructures, and, especially, it shows a higher responsivity as compared with other photodetectors. In addition, achieved a highest responsivity of 40.12 A/W, quick response (rise/decay time of 0.8 s/3 s) and high sensitivity (2 × 104) for the Cu doped ZnO Nps annealed at 300 °C. It is established that the devices under higher power incident light show much lower 1/f noise. These results are meaningful to the noise control and performance improvement in the development of Schottky diode based PD-devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Shabannia, High-sensitivity UV photodetector based on oblique and vertical Co-doped ZnO nanorods. Mater. Lett. 214, 254–256 (2018)

    Article  Google Scholar 

  2. S.S. Shendage, V.L. Patil, S.A. Vanalakar, S.P. Patil, N.S. Harale, J.L. Bhosale, P.S. Patil, Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sens. Actuators B Chem. 240, 426–433 (2017)

    Article  Google Scholar 

  3. S. Dhar, T. Majumder, P. Chakraborty, S.P. Mondal, DMSO modified PEDOT: PSS polymer/ZnO nanorods Schottky junction ultraviolet photodetector: Photoresponse, external quantum efficiency, detectivity, and responsivity augmentation using N doped graphene quantum dots. Org. Electro. 53, 101–110 (2017)

    Article  Google Scholar 

  4. V.L. Patil, S.A. Vanalakar, P.S. Patil, J.H. Kim, Fabrication of nanostructured ZnO thin films based NO2 gas sensor via SILAR technique. Sens Actuators B Chem 239, 1185–1193 (2017)

    Article  Google Scholar 

  5. Z. Bai, Y. Zhang, Self-powered UV–visible photodetectors based on ZnO/Cu2O nanowire/electrolyte heterojunctions. J. Alloy. Compd. 675, 325–330 (2016)

    Article  Google Scholar 

  6. M.L. Yola, T. Eren, N. Atar, S. Wang, Adsorptive and photocatalytic removal of reactive dyes by silver nanoparticle-colemanite ore waste. Chem. Eng. J. 242, 333–340 (2014)

    Article  Google Scholar 

  7. V.K. Gupta, N. Atar, M.L. Yola, Z. Üstündağ, L. Uzun, A novel magnetic Fe@ Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res. 48, 210–217 (2014)

    Article  Google Scholar 

  8. V.K. Gupta, S. Agarwal, A. Olgun, Hİ. Demir, M.L. Yola, N. Atar, Adsorptive properties of molasses modified boron enrichment waste based nanoclay for removal of basic dyes. J. Ind. Eng. Chem. 34, 244–249 (2016)

    Article  Google Scholar 

  9. S.P. Patil, V.L. Patil, S.S. Shendage, N.S. Harale, S.A. Vanalakar, J.H. Kim, P.S. Patil, Spray pyrolyzed indium oxide thick films as NO2 gas sensor. Ceram. Int. 42(14), 16160–16168 (2016)

    Article  Google Scholar 

  10. S.A. Vanalakar, V.L. Patil, N.S. Harale, S.A. Vhanalakar, M.G. Gang, J.Y. Kim, J.H. Kim, Controlled growth of ZnO nanorod arrays via wet chemical route for NO2 gas sensor applications. Sens Actuators B Chem. 221, 1195–1201 (2015)

    Article  Google Scholar 

  11. S.J. Young, Y.H. Liu, Low-frequency noise properties of MgZnO nanorod ultraviolet photodetectors with and without UV illumination. Sens. Actuators, A 269, 363–368 (2018)

    Article  Google Scholar 

  12. B.A. Gozeh, A. Karabulut, A. Yildiz, F. Yakuphanoglu, Solar light responsive ZnO nanoparticles adjusted using Cd and La Co-dopant photodetector. J. Alloy. Compd. 732, 16–24 (2018)

    Article  Google Scholar 

  13. Y.T. Kwon, S.O. Kang, J.A. Cheon, Y. Song, J.J. Lee, Y.H. Choa, Fabrication of a Graphene/ZnO based pn junction device and its ultraviolet photoresponse properties. Appl. Surf. Sci. 415, 2–7 (2017)

    Article  Google Scholar 

  14. P.S. Shewale, N.K. Lee, S.H. Lee, K.Y. Kang, Y.S. Yu, Ti doped ZnO thin film basedUV photodetector: fabrication and characterization. J. Alloy. Compd. 624, 251–257 (2015)

    Article  Google Scholar 

  15. H.S. Al-Salman, M.J. Abdullah, Fabrication and characterization of undoped andcobalt-dopedZnO Based UV photodetector prepared by RF-sputtering. J. Mater. Sci. Technol. 29, 1139–1145 (2013)

    Article  Google Scholar 

  16. R. Rajalakshmi, S. Angappane, Synthesis, characterization and photoresponsestudy of undoped and transition metal (Co, Ni, Mn) doped ZnO thin films. J. Mater. Sci. Eng. B 178, 1068–1075 (2013)

    Article  Google Scholar 

  17. Z. Banu Bahsi, A. Yavuz Oral, Effects of Mn and Cu doping on the microstructures andoptical properties of sol–gel derived ZnO thin films. Opt. Mater. 29, 672 (2007)

    Article  Google Scholar 

  18. A. Mezni, A. Mlayah, V. Serin, L.S. Smiri, Synthesis of hybrid Au–ZnO nanoparticles using a one pot polyol process. Mater. Chem. Phys. 147, 496–503 (2014)

    Article  Google Scholar 

  19. I.B. Elkamel, N. Hamdaoui, A. Mezni, R. Ajjel, L. Beji, High responsivity and 1/f noise of an ultraviolet photodetector based on Ni doped ZnO nanoparticles. RSC Adv. 8, 32333–32343 (2018)

    Article  Google Scholar 

  20. T. Ghosh, D. Basak, Highly enhanced ultraviolet photoresponse property in Cudoped and Cu–Li co-doped ZnO films. J. Phys. D Appl. Phys. 42, 1453045 (2009)

    Google Scholar 

  21. F.M. Li, C.T. Zhu, S.Y. Ma, A.M. Sun, H.S. Song, X.B. Li, X. Wang, Investigation of the blue–green emission and UV photosensitivity of Cu-doped ZnO films. Mater. Sci. Semicond. Process. 16, 1079–1085 (2013)

    Article  Google Scholar 

  22. M. Mittal, M. Sharma, O.P. Pandey, UV–Visible light induced photocatalytic studies of Cu doped ZnO nanoparticles prepared by co-precipitation method. Sol. Energy 110, 386–397 (2014)

    Article  Google Scholar 

  23. J.R. Torres-Hernández, E. Ramírez-Morales, L. Rojas-Blanco, J. Pantoja-Enriquez, G. Oskam, F. Paraguay-Delgado, G. Pérez-Hernández, Structural, optical and photocatalytic properties of ZnO nanoparticles modified with Cu. Mater. Sci. Semicond. Process. 37, 87–92 (2015)

    Article  Google Scholar 

  24. P.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Boston, 1978)

    Google Scholar 

  25. R. Javed, M. Usman, B. Yücesan, M. Zia, E. Gürel, Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudianaBertoni. Plant Physiol. Biochem. 110, 94–99 (2017)

    Article  Google Scholar 

  26. S. Fabbiyola, V. Sailaja, L.J. Kennedy, M. Bououdina, J.J. Vijaya, Optical and magnetic properties of Ni-doped ZnO nanoparticles. J. Alloy. Compd. 694, 522–531 (2017)

    Article  Google Scholar 

  27. M. Anbuvannan, M. Ramesh, G. Viruthagiri, N. Shanmugam, N. Kannadasan, Synthesis, characterization and photocatalytic activity of ZnO nanoparticles prepared by biological method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 143, 304–308 (2015)

    Article  Google Scholar 

  28. A.C. Janaki, E. Sailatha, S. Gunasekaran, Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 144, 17–22 (2015)

    Article  Google Scholar 

  29. V. Shanmugam, K.S. Jeyaperumal, Investigations of visible light driven Sn and Cu doped ZnO hybrid nanoparticles for photocatalytic performance and antibacterial activity. Appl. Surf. Sci. 449, 617–630 (2018)

    Article  Google Scholar 

  30. K.P. Raj, K. Sadayandi, Effect of temperature on structural, optical and photoluminescence studies on ZnO nanoparticles synthesized by the standard co-precipitation method. Phys. B 487, 1–7 (2016)

    Article  Google Scholar 

  31. D. Verma, A.K. Kole, P. Kumbhakar, Red shift of the band-edge photoluminescence emission and effects of annealing and capping agent on structural and optical properties of ZnO nanoparticles. J. Alloy. Compd. 625, 122–130 (2015)

    Article  Google Scholar 

  32. S.A. Vanalakar, S.S. Mali, M.P. Suryawanshi, N.L. Tarwal, P.R. Jadhav, G.L. Agawane, J.Y. Kim, Photoluminescence quenching of a CdS nanoparticles/ZnO nanorods core–shell heterogeneous film and its improved photovoltaic performance. Opt. Mater. 37, 766–772 (2014)

    Article  Google Scholar 

  33. A.N. Mallika, A.R. Reddy, K.S. Babu, C. Sujatha, K.V. Reddy, Structural and photoluminescence properties of Mg substituted ZnO nanoparticles. Opt. Mater. 36, 879–884 (2014)

    Article  Google Scholar 

  34. M. Ashokkumar, S. Muthukumaran, Effect of Ni doping on electrical, photoluminescence and magnetic behavior of Cu doped ZnO nanoparticles. J. Lumin. 162, 97–103 (2015)

    Article  Google Scholar 

  35. S.K. Shahi, N. Kaur, J.S. Shahi, V. Singh, Investigation of morphologies, photoluminescence and photocatalytic properties of ZnO nanostructures fabricated using different basic ionic liquids. J. Environ. Chem. Eng. 6, 3718 (2016)

    Article  Google Scholar 

  36. C. Abinaya, M. Marikkannan, M. Manikandan, J. Mayandi, P. Suresh, V. Shanmugaiah, J.M. Pearce, Structural and optical characterization and efficacy of hydrothermal synthesized Cu and Ag doped zinc oxide nanoplate bactericides. Mater. Chem. Phys. 184, 172–182 (2016)

    Article  Google Scholar 

  37. J. Xia, X. Huang, L.Z. Liu, M. Wang, L. Wang, B. Huang, D.D. Zhu, J.J. Li, C.Z. Gu, X.M. Meng, Nanoscale 6, 8949 (2014)

    Article  Google Scholar 

  38. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Nat. Nanotechnol. 8, 497 (2013)

    Article  Google Scholar 

  39. S.R. Tamalampudi, Y.Y. Lu, U.R. Kumar, R. Sankar, C.D. Liao, B.K. Moorthy, C.H. Cheng, F.C. Chou, Y.T. Chen, Nano Lett. 14, 2800 (2014)

    Article  Google Scholar 

  40. S.L. Zhao, H.A. Wang, Y. Zhou, L. Liao, Y. Jiang, X. Yang, G.C. Chen, M. Lin, Y. Wang, H.L. Peng, Z.F. Liu, Nano Res. 8, 288 (2015)

    Article  Google Scholar 

  41. C. Wang, S.J. Chang, Y.K. Su, Y. Chiou, C. Chang, T. Lin, H. Liu, J.J. Tang, Semicond. Sci. Technol. 20, 485 (2005)

    Article  Google Scholar 

  42. S.I. Inamdar, V.V. Ganbavle, K.Y. Rajpure, ZnO based visible–blind UV photodetector by spray pyrolysis. Superlattices Microstruct. 76, 253–263 (2014)

    Article  Google Scholar 

  43. M.S. Mahdi, K. Ibrahim, N.M. Ahmed, A. Hmood, F.I. Mustafa, S.A. Azzez, M. Bououdina, High performance and low-cost UV–Visible–NIR photodetector based on tin sulphide nanostructures. J. Alloy. Compd. 735, 2256–2262 (2018)

    Article  Google Scholar 

  44. Y. Wei, Z. Ren, A. Zhang, P. Mao, H. Li, X. Zhong, J. Wang, Hybrid organic/PbS quantum dot bilayer photodetector with low dark current and high detectivity. Adv. Funct. Mater. 28(11), 1706690 (2018)

    Article  Google Scholar 

  45. Z. Ke, Z. Yang, M. Wang, M. Cao, Z. Sun, J. Shao, Low temperature annealed ZnO film UV photodetector with fast photoresponse. Sens. Actuators, A 253, 173–180 (2017)

    Article  Google Scholar 

  46. F.H. Alsultany, Z. Hassan, N.M. Ahmed, N.G. Elafadill, H.R. Abd, Effects of ZnO seed layer thickness on catalyst-free growth of ZnO nanostructures for enhanced UV photoresponse. Opt. Laser Technol. 98, 344–353 (2018)

    Article  Google Scholar 

  47. A.S. Al-Asadi, L.A. Henley, S. Ghosh, A. Quetz, I. Dubenko, N. Pradhan, M. Terrones, Fabrication and characterization of ultraviolet photosensors from ZnO nanowires prepared using chemical bath deposition method. J. Appl. Phys. 119(8), 084306 (2016)

    Article  Google Scholar 

  48. R. Sugumar, S. Angappane, Influence of substrate heating and annealing on the properties and photoresponse of manganese doped zinc oxide thin films. Superlattices Microstruct. 110, 57–67 (2017)

    Article  Google Scholar 

  49. K.H. Kim, K.C. Park, D.Y. Ma, J. Appl. Phys. 81, 7764 (1997)

    Article  Google Scholar 

  50. S. Park, S. Kim, G.J. Sun, D.B. Byeon, S.K. Hyun, W.I. Lee, C. Lee, ZnO-core/ZnSe-shell nanowire UV photodetector. J. Alloy. Compd. 658, 459–464 (2016)

    Article  Google Scholar 

  51. K. Singh, I. Rawal, R. Punia, R. Dhar, X-ray photoelectron spectroscopy investigations of band offsets in Ga0. 02Zn0. 98O/ZnO heterojunction for UV photodetectors. J. Appl. Phys. 122(15), 155301 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nejeh Hamdaoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Elkamel, I., Hamdaoui, N., Mezni, A. et al. Synthesis and characterization of Cu doped ZnO nanoparticles for stable and fast response UV photodetector at low noise current. J Mater Sci: Mater Electron 30, 9444–9454 (2019). https://doi.org/10.1007/s10854-019-01276-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01276-2

Navigation