Skip to main content
Log in

Optical and current transport properties of CuO/ZnO nanocoral p–n heterostructure hydrothermally synthesized at low temperature

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We demonstrate the synthesis and investigate the electrical and optical characteristics of ‘nanocorals’ (NCs) composed of CuO/ZnO grown at low temperature through the hydrothermal approach. High-density CuO nanostructures (NSs) were selectively grown on ZnO nanorods (NRs). The synthesized NCs were used to fabricate p–n heterojunctions that were investigated by the current density–voltage (JV) and the capacitance–voltage (CV) techniques. It was found that the NC heterojunctions exhibit a well-defined diode behavior with a threshold voltage of about 1.52 V and relatively high rectification factor of ∼760. The detailed forward JV characteristics revealed that the current transport is controlled by an ohmic behavior for V≤0.15 V, whereas at moderate voltages 1.46≤V<1.5 the current follows a Jα exp(βV) relationship. At higher voltages (≥1.5 V) the current follows the relation JαV 2, indicating that the space-charge-limited current mechanism is the dominant current transport. The CV measurement indicated that the NC diode has an abrupt junction. The grown CuO/ZnO NCs exhibited a broad light absorption range that is covering the UV and the entire visible parts of the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O.V. Kharissova, B.I. Kharisov, Ind. Eng. Chem. Res. 49, 11142 (2010)

    Article  Google Scholar 

  2. Q. Zhang, S.J. Liu, S.H. Yu, J. Mater. Chem. 19, 191 (2009)

    Article  Google Scholar 

  3. S. Ilican, M. Caglar, Y. Caglar, Appl. Surf. Sci. 256, 7204 (2010)

    Article  ADS  Google Scholar 

  4. K. Ando, H. Saito, Z.W. Jin, T. Fukumura, M. Kawasaki, Y. Matsumoto, H. Koinuma, J. Appl. Phys. 89, 7284 (2001)

    Article  ADS  Google Scholar 

  5. P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Nat. Mater. 2, 673 (2003)

    Article  ADS  Google Scholar 

  6. Z.L. Wang, J.H. Song, Science 312, 242 (2006)

    Article  ADS  Google Scholar 

  7. R. Ghosh, S. Fujihara, D. Basak, J. Electron. Mater. 35, 1728 (2006)

    Article  ADS  Google Scholar 

  8. J.Y. Park, D.E. Song, S.S. Kim, Nanotechnology 19, 105503 (2008)

    Article  ADS  Google Scholar 

  9. M.H. Asif, A. Fulati, O. Nur, M. Willander, C. Brannmark, P. Stralfors, S.I. Borjesson, F. Elinder, Appl. Phys. Lett. 95, 023703 (2009)

    Article  Google Scholar 

  10. Z.L. Wang, J. Phys., Condens. Matter 16, R829 (2004)

    Article  ADS  Google Scholar 

  11. A. Zainelabdin, S. Zaman, G. Amin, O. Nur, M. Willander, Cryst. Growth Des. 10, 3250 (2010)

    Article  Google Scholar 

  12. G. Amin, S. Zaman, A. Zainelabdin, O. Nur, M. Willander, Phys. Status Solidi R 5, 71 (2011)

    Article  Google Scholar 

  13. Y.W. Zhu, T. Xu, F.C. Cheong, X.J. Xu, C.T. Lim, V.B.C. Tan, J.T.L. Thong, C.H. Sow, Nanotechnology 16, 88 (2005)

    Article  ADS  Google Scholar 

  14. F. Teng, W. Yao, Y. Zheng, Y. Ma, Y. Teng, T. Xu, S. Liang, Y. Zhu, Sens. Actuators B, Chem. 134, 761 (2008)

    Article  Google Scholar 

  15. X.Y. Xue, L.L. Xing, Y.J. Chen, S.L. Shi, Y.G. Wang, T.H. Wang, J. Phys. Chem. C 112, 12157 (2008)

    Article  Google Scholar 

  16. M. Abaker, A. Umar, S. Baskoutas, S.H. Kim, S.W. Hwang, J. Phys. D, Appl. Phys. 44, 155405 (2011)

    Article  ADS  Google Scholar 

  17. H.L. Xu, W.Z. Wang, W. Zhu, L. Zhou, M.L. Ruan, Cryst. Growth Des. 7, 2720 (2007)

    Article  Google Scholar 

  18. C.H. Lu, L.M. Qi, J.H. Yang, D.Y. Zhang, N.Z. Wu, J.M. Ma, J. Phys. Chem. B 108, 17825 (2004)

    Article  Google Scholar 

  19. B. Liu, H.C. Zeng, J. Am. Chem. Soc. 126, 8124 (2004)

    Article  Google Scholar 

  20. L. Zhu, Y. Chen, Y. Zheng, N. Li, J. Zhao, Y. Sun, Mater. Lett. 64, 976 (2010)

    Article  Google Scholar 

  21. D. Li, Y.H. Leung, A.B. Djurisic, Z.T. Liu, M.H. Xie, J. Gao, W.K. Chan, J. Cryst. Growth 282, 105 (2005)

    Article  ADS  Google Scholar 

  22. G. Uozumi, M. Miyayama, H. Yanagida, J. Mater. Sci. 32, 2991 (1997)

    Article  Google Scholar 

  23. J.D. Choi, G.M. Choi, Sens. Actuators B, Chem. 69, 120 (2000)

    Article  Google Scholar 

  24. D.H. Yoon, J.H. Yu, G.M. Choi, Sens. Actuators B, Chem. 46, 15 (1998)

    Article  Google Scholar 

  25. K.K. Baek, H.L. Tuller, Solid State Ion. 75, 179 (1995)

    Article  Google Scholar 

  26. S.J. Jung, H. Yanagida, Sens. Actuators B, Chem. 37, 55 (1996)

    Article  Google Scholar 

  27. S. Mridha, D. Basak, Semicond. Sci. Technol. 21, 928 (2006)

    Article  ADS  Google Scholar 

  28. Y. Zhu, C.H. Sow, T. Yu, Q. Zhao, P. Li, Z. Shen, D. Yu, J.T.L. Thong, Adv. Funct. Mater. 16, 2415 (2006)

    Article  Google Scholar 

  29. S. Jung, S. Jeon, K. Yong, Nanotechnology 22, 015606 (2011)

    Article  ADS  Google Scholar 

  30. Z. Guo, X. Chen, J. Li, J.H. Liu, X.J. Huang, Langmuir 27, 6193 (2011)

    Article  Google Scholar 

  31. C. Pacholski, A. Kornowski, H. Weller, Abstr. Pap. Am. Chem. Soc. 224, U351 (2002)

    Google Scholar 

  32. D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, Hoboken, 2005)

    Book  Google Scholar 

  33. D.C. Kim, W.S. Han, H.K. Cho, B.H. Kong, H.S. Kim, Appl. Phys. Lett. 91, 231901 (2007)

    Article  ADS  Google Scholar 

  34. P. Klason, O. Nur, M. Willander, Nanotechnology 19, 415708 (2008)

    Article  Google Scholar 

  35. J.D. Ye, S.L. Gu, S.M. Zhu, W. Liu, S.M. Liu, R. Zhang, Y. Shi, Y.D. Zheng, Appl. Phys. Lett. 88, 182112 (2006)

    Article  ADS  Google Scholar 

  36. N.K. Reddy, Q. Ahsanulhaq, J.H. Kim, Y.B. Hahn, Appl. Phys. Lett. 92, 043127 (2008)

    Article  ADS  Google Scholar 

  37. J.A. Edmond, K. Das, R.F. Davis, J. Appl. Phys. 63, 922 (1988)

    Article  ADS  Google Scholar 

  38. R.L. Hoffman, J.F. Wager, M.K. Jayaraj, J. Tate, J. Appl. Phys. 90, 5763 (2001)

    Article  ADS  Google Scholar 

  39. M.A. Lampert, P. Mark, Current Injection in Solids (Academic Press, New York, 1970)

    Google Scholar 

  40. M. Haase, H. Weller, A. Henglein, J. Phys. Chem. 92, 482 (1988)

    Article  Google Scholar 

  41. P.S. Nayar, J. Appl. Phys. 53, 1069 (1982)

    Article  ADS  Google Scholar 

  42. Z. Guo, D.X. Zhao, Y.C. Liu, D.Z. Shen, J.Y. Zhang, B.H. Li, Appl. Phys. Lett. 93, 163501 (2008)

    Article  ADS  Google Scholar 

  43. F.P. Koffyberg, F.A. Benko, J. Appl. Phys. 53, 1173 (1982)

    Article  ADS  Google Scholar 

  44. M.T.S. Nair, L. Guerrero, O.L. Arenas, P.K. Nair, Appl. Surf. Sci. 150, 143 (1999)

    Article  ADS  Google Scholar 

  45. S.C. Ray, Sol. Energy Mater. Sol. Cells 68, 307 (2001)

    Article  Google Scholar 

  46. F. Marabelli, G.B. Parravicini, F. Salghettidrioli, Phys. Rev. B 52, 1433 (1995)

    Article  ADS  Google Scholar 

  47. R.V. Pisarev, V.V. Pavlov, A.M. Kalashnikova, A.S. Moskvin, Phys. Rev. B 82, 224502 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zainelabdin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zainelabdin, A., Zaman, S., Amin, G. et al. Optical and current transport properties of CuO/ZnO nanocoral p–n heterostructure hydrothermally synthesized at low temperature. Appl. Phys. A 108, 921–928 (2012). https://doi.org/10.1007/s00339-012-6995-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6995-2

Keywords

Navigation