Skip to main content
Log in

Synthesis and supercapacitor performance of Sm3RuO7 nanorods and Sm3RuO7/MnO2 nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we report the synthesis of Samarium ruthenate (Sm3RuO7) in the form of nanorods for the first time using the hydrothermal method, and Sm3RuO7-MnO2 nanocomposite using the physical blending approach. To ascertain the materials´ phase formation, crystallinity, and average crystallite size, Powder X-ray diffraction (PXRD) analysis was used. The presences of vibrational modes in the samples were identified by Fourier transform infrared (FTIR) spectroscopy. X-ray photoelectron spectroscopy (XPS) was used to identify the oxidation states and chemical elements that were present on the surface of the samples. The surface morphology of the samples was tested using Field emission scanning electron microscopy (FESEM). Along with XRD analyses, the crystalline nature of the samples and d-spacing were further confirmed using Transmission Electron Microscopy (TEM) images with selected area electron diffraction (SAED). The electrochemical behaviour of the samples was examined using cyclic voltammetry and chronopotentiometry techniques. The maximum specific capacitance of Sm3RuO7/MnO2 was determined by cyclic voltammetry to be 805 F/g at a scan rate of 5 mV/s, which is higher than the 326 F/g of pure Sm3RuO7 at the same scan rate. At a current density of 1 A/g, the charge–discharge analysis of Sm3RuO7/MnO2 produced a high specific capacitance of 802 F/g. The fast charge transfer kinetics of the materials was noticeable in the electrochemical impedance spectra. The incorporation MnO2 in Sm3RuO7 provided extra interfacial sites, which led to the superior supercapacitive behaviour of the composite Sm3RuO7/MnO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data used to support the findings of this study were included within the article. No supplementary information files were added.

References

  1. G. Vignesh, P. Devendran, N. Nallamuthu, S. Sudhahar, M.K. Kumar, N-rGO / NiCo 2 O 4 nanocomposite for high performance supercapacitor applications. J. Mater. Sci. Mater. Electron. 34, 1–14 (2023). https://doi.org/10.1007/s10854-023-10242-y

    Article  CAS  Google Scholar 

  2. V. Shanmugavalli et al., High performance NiCo 2 O 4 / PANI / graphene nanofiber for supercapacitor applications. J. Mater. Sci. Mater. Electron. 34, 1–12 (2023). https://doi.org/10.1007/s10854-023-10248-6

    Article  CAS  Google Scholar 

  3. M. Arunkumar, A. Paul, Importance of electrode preparation methodologies in supercapacitor applications. ACS Omega (2017). https://doi.org/10.1021/acsomega.7b01275

    Article  Google Scholar 

  4. N. Choudhary et al., Asymmetric supercapacitor electrodes and devices. Adv. Mater. (2017). https://doi.org/10.1002/adma.201605336

    Article  PubMed  Google Scholar 

  5. P. Simon, Y. Gogotsi, P. Simon, Y. Gogotsi, N. Materials, Nat. Mater. (2019). https://doi.org/10.1038/nmat2297

    Article  Google Scholar 

  6. Series, I. O. P. C. & Science, M. Supercapacitor technology and its applications : a review Supercapacitor technology and its applications : a review. (2019) https://doi.org/10.1088/1757-899X/561/1/012105.

  7. C. Soc, G. Wang, J. Zhang, Chem. Soc. Rev. (2012). https://doi.org/10.1039/c1cs15060j

    Article  Google Scholar 

  8. J. Schenk, P.M. Wilde, E. Abdelmula, P. Axmann, J. Garche, J. Power. Sources 105, 182–188 (2002). https://doi.org/10.1016/S0378-7753(01)00937-5

    Article  Google Scholar 

  9. T.N.V. Raj, P.A. Hoskeri, Facile synthesis of perovskite lanthanum aluminate and its green reduced graphene oxide composite for high performance supercapacitors. J. Electroanal. Chem. 858, 113830 (2020). https://doi.org/10.1016/j.jelechem.2020.113830

    Article  CAS  Google Scholar 

  10. C. Dang, T.S. Algarni, A.M. Al-mohaimeed, Carbon (2020). https://doi.org/10.1016/j.carbon.2020.10.081

    Article  Google Scholar 

  11. P.M. Wilde, T.J. Guther, R. Oesten, J. Garche, J. Electroanal. Chem. 461, 154–160 (1999). https://doi.org/10.1016/S0022-0728(98)00179-X

    Article  CAS  Google Scholar 

  12. N. Sivakumar, Int. J. Energy Res. (2020). https://doi.org/10.1002/er.6146

    Article  Google Scholar 

  13. M. Isacfranklin et al., Perovskite rare earth porous hollow microspheres of SmFeO3/MWCNT battery type asymmetric hybrid supercapacitors. Electrochim. Acta (2023). https://doi.org/10.1016/J.ELECTACTA.2023.142519

    Article  Google Scholar 

  14. U.V. Gopi, P. Bhojane, K.S. Smaran, Engineering oxygen-deficient nanocomposite comprising LaNiO3-δ and reduced graphene oxide for high-performance pseudocapacitors. J. Energy Storage 54, 105301 (2022). https://doi.org/10.1016/j.est.2022.105301

    Article  Google Scholar 

  15. P. Phumuen et al., Ball milling modification of perovskite LaNiO3 powders for enhancing electrochemical pseudocapacitor. Surfaces and Interfaces 25, 101282 (2021). https://doi.org/10.1016/j.surfin.2021.101282

    Article  CAS  Google Scholar 

  16. E. Harputlu, Colloids Surfaces A Physicochem. Eng. Asp (2020). https://doi.org/10.1016/j.colsurfa.2021.127787

    Article  Google Scholar 

  17. S. Arunachalam, B. Kirubasankar, D. Pan, H. Liu, C. Yan, ScienceDirect Research progress in rare earths and their composites based electrode materials for supercapacitors. Green Energy Environ. 5, 259–273 (2020). https://doi.org/10.1016/j.gee.2020.07.021

    Article  Google Scholar 

  18. S. Liang, H. Wang, Y. Li, H. Qin et al., Sust. Energy Fuels. (2020). https://doi.org/10.1039/D0SE00669F

    Article  Google Scholar 

  19. B.J. Rani, G. Ravi, R. Yuvakkumar, S.I. Hong, Novel SmMn 2 O 5 hollow long nano-cuboids for electrochemical supercapacitor and water splitting applications. Vacuum 166, 279–285 (2019). https://doi.org/10.1016/j.vacuum.2019.05.029

    Article  CAS  Google Scholar 

  20. B. Jansi Rani, M. Gowsalya, G. Ravi, R. Yuvakkumar, S.I. Hong, Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/ab3333

    Article  Google Scholar 

  21. W.R. Gemmill, M.D. Smith, H. Loye, S. Carolina, Inorganic Chem. (2004). https://doi.org/10.1021/ic049700l

    Article  Google Scholar 

  22. M. Inabayashi, Y. Doi, M. Wakeshima, Y. Hinatsu, J. Solid State Chem. (2017). https://doi.org/10.1016/j.jssc.2017.07.022

    Article  Google Scholar 

  23. Y. Hinatsu, Y. Doi, Structural phase transition and antiferromagnetic transition. J. Solid State Chem. 220, 22–27 (2014). https://doi.org/10.1016/j.jssc.2014.08.003

    Article  CAS  Google Scholar 

  24. S.D. Dhas et al., Synthesis of NiO nanoparticles for supercapacitor application as an efficient electrode material. Vacuum 181, 109646 (2020). https://doi.org/10.1016/j.vacuum.2020.109646

    Article  CAS  Google Scholar 

  25. V. Subramanian, S.C. Hall, P.H. Smith, B. Rambabu, Solid State Ionics (2004). https://doi.org/10.1016/j.ssi.2004.01.070

    Article  Google Scholar 

  26. V. Subramanian, H. Zhu, B. Wei, Nanostructured MnO2: hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material. J. Power. Sources (2006). https://doi.org/10.1016/j.jpowsour.2006.04.012

    Article  Google Scholar 

  27. N.G. Prakash et al., High performance one dimensional α-MoO3 nanorods for supercapacitor applications. Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.03.032

    Article  Google Scholar 

  28. X. Zhang et al., Polydopamine-assisted formation of Co 3 O 4 -nanocube-anchored reduced graphene oxide composite for high-performance supercapacitors. Ceram. Int. 45, 13894–13902 (2019). https://doi.org/10.1016/j.ceramint.2019.04.087

    Article  CAS  Google Scholar 

  29. Z. Fan et al., Adv. Funct. Mater. (2011). https://doi.org/10.1002/adfm.201100058

    Article  Google Scholar 

  30. X. Lu et al., Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy Environ. Sci. 4, 2915–2921 (2011). https://doi.org/10.1039/C1EE01338F

    Article  CAS  Google Scholar 

  31. Poonam, K. Sharma, A. Arora, S.K. Tripathi, Review of supercapacitors: Materials and devices. J. Energy Storage. (2019). https://doi.org/10.1016/j.est.2019.01.010

    Article  Google Scholar 

  32. P. Kulkarni, S.K. Nataraj, R.G. Balakrishna, D.H. Nagaraju, M.V. Reddy, Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. J. Mater. Chem. A Mater. energy Sustain. (2017). https://doi.org/10.1039/C7TA07329A

    Article  Google Scholar 

  33. M.A. Mahadadalkar et al., Architecture of the CdIn2S4/graphene nano-heterostructure for solar hydrogen production and anode for lithium ion battery. RSC Adv. 6, 34724–34736 (2016). https://doi.org/10.1039/C6RA02002J

    Article  CAS  Google Scholar 

  34. R.A. Davoglio, G. Cabello, J.F. Marco, S.R. Biaggio, Electrochim. Acta (2018). https://doi.org/10.1016/j.electacta.2017.12.118

    Article  Google Scholar 

  35. Jaidev, R.I. Jafri, A.K. Mishra, S. Ramaprabhu, Polyaniline-MnO2 nanotube hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte. J. Mater. Chem. (2011). https://doi.org/10.1039/C1JM13191E

    Article  Google Scholar 

  36. M. Rabiei, A. Palevicius, A. Monshi, S. Nasiri, Nanomaterials (2020). https://doi.org/10.3390/nano10091627

    Article  PubMed  PubMed Central  Google Scholar 

  37. K.A. Aly, N.M. Khalil, Y. Algamal, Q.M.A. Saleem, Lattice strain estimation for CoAl2O4 nano particles using Williamson-Hall analysis. J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.03.213

    Article  Google Scholar 

  38. U.M. Patil, S.B. Kulkarni, V.S. Jamadade, C.D. Lokhande, Chemically synthesized hydrous RuO2 thin films for supercapacitor application. J. Alloys Compd. 509, 1677–1682 (2011)

    Article  CAS  Google Scholar 

  39. H. Wang, Z. Lu, D. Qian, Y. Li, Nanotechnology (2007). https://doi.org/10.1088/0957-4484/18/11/115616

    Article  PubMed  PubMed Central  Google Scholar 

  40. A. Shiralizadeh, M.R. Ganjali, Appl. Surface Sci. (2017). https://doi.org/10.1016/j.apsusc.2017.01.021

    Article  Google Scholar 

  41. B.T. Sone, E. Manikandan, A. Gurib-fakim, M. Maaza, Sm 2O3 nanoparticles green synthesis via callistemon viminalis’ extract. J. Alloys Compd. 650, 357–362 (2015). https://doi.org/10.1016/j.jallcom.2015.07.272

    Article  CAS  Google Scholar 

  42. E.E. Khawaja, M.A. Salim, M.A. Khan, F.F. Al-Adel, G.D. Khattak, Z. Hussain, XPS, auger, electrical and optical studies of vanadium phosphate glasses doped with nickel oxide. J. non-crystalline solids (1989). https://doi.org/10.1016/0022-3093(89)90179-8

    Article  Google Scholar 

  43. H. Brunckova, M. Kanuchova, H. Kolev, E. Mudra, XPS characterization of Sm Nb O 4 and Sm Ta O 4 precursors prepared by Sol-Gel method. Appl. Surface Sci. (2018). https://doi.org/10.1016/j.apsusc.2018.12.143

    Article  Google Scholar 

  44. A.S. Dezfuli, M.R. Ganjali, H.R. Naderi, Anchoring samarium oxide nanoparticles on reduced graphene oxide for high-performance supercapacitor. Appl. Surf. Sci. (2017). https://doi.org/10.1016/j.apsusc.2017.01.021

    Article  Google Scholar 

  45. Y. Guo, W. Zhang, Y. Sun, M. Dai, Electrochimica acta ruthenium nanoparticles stabilized by mercaptan and acetylene derivatives with supercapacitor application. Electrochim. Acta 270, 284–293 (2018). https://doi.org/10.1016/j.electacta.2018.03.037

    Article  CAS  Google Scholar 

  46. J. Zhang et al., Template synthesis of tubular ruthenium oxides for supercapacitor applications. J. Phys. Chem. C (2010). https://doi.org/10.1021/jp105146c

    Article  Google Scholar 

  47. D.J. Morgan, Resolving ruthenium : XPS studies of common ruthenium materials. Surf. Interface Anal. (2015). https://doi.org/10.1002/sia.5852

    Article  Google Scholar 

  48. J. Singh, A. Roychoudhury, M. Srivastava, P.R. Solanki, J. Mater. Chem. B (2013). https://doi.org/10.1039/c3tb20690d

    Article  PubMed  PubMed Central  Google Scholar 

  49. P.E. Saranya, S. Selladurai, Efficient electrochemical performance of ZnMn2O4 nanoparticles with rGO nanosheets for electrodes in supercapacitor applications. J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-8268-5

    Article  Google Scholar 

  50. S. Alonso, A. Palomo, Alkaline activation of metakaolin and calcium hydroxide mixtures : influence of temperature, activator concentration and solids ratio. Mater. Lett. (2001). https://doi.org/10.1016/S0167-577X(00)00212-3

    Article  Google Scholar 

  51. D. Majumdar, T.Z. MaiyalaganJiang, Recent progress in ruthenium oxide-based composites for supercapacitor applications. Chem. Electro. Chem (2019). https://doi.org/10.1002/celc.201900668

    Article  Google Scholar 

  52. S.B. Ubale et al., Electrochemical behavior of hydrothermally synthesized porous groundnuts - like samarium oxide thin films. SN Appl. Sci. (2020). https://doi.org/10.1007/s42452-020-2467-z

    Article  Google Scholar 

  53. T. Wang et al., Facilitated transport channels in carbon nanotube / carbon nano fi ber hierarchical composites decorated with manganese dioxide for fl exible supercapacitors. J. Power. Sources 274, 709–717 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.102

    Article  CAS  Google Scholar 

  54. Z.M. Riyas, M.R. Prabhu et al., Hydrothermal synthesis of La 2 O 3—ZnO nanocomposites as electrode materials for asymmetric supercapacitor applications. J. Mater. Sci. Mater. Electron. 34, 1–19 (2023). https://doi.org/10.1007/s10854-023-10988-5

    Article  CAS  Google Scholar 

  55. A.I. Inamdar et al., Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors. J. Power. Sources 196, 2393–2397 (2011). https://doi.org/10.1016/j.jpowsour.2010.09.052

    Article  CAS  Google Scholar 

  56. K.S. Elmessiry et al., Free—standing working electrodes for supercapacitors based on composite polymer nanofibers and functionalized with graphene oxide. J. Electron. Mater. 50, 5599–5611 (2021). https://doi.org/10.1007/s11664-021-09120-2

    Article  CAS  Google Scholar 

  57. M.M. Vadiyar, S.C. Bhise, S.K. Patil et al., Mechanochemical growth of porous ZnFe2O4 nano-flakes thin film as electrode for supercapacitor application. RSC Adv. (2015). https://doi.org/10.1039/C5RA07588B

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this study conception and design. YV: Resources, Formal analysis, Writing—review and editing, Supervision, MS: Investigation, Methodology, Writing—draft and DG: Resources and Supervision.

Corresponding author

Correspondence to Y. Vidyalakshmi.

Ethics declarations

Competing interest

The authors declare no competing financial interest.

Ethical approval

All procedures performed in this study do not harm /use any animals or humans.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidyalakshmi, Y., Vaishali, M.S. & Geetha, D. Synthesis and supercapacitor performance of Sm3RuO7 nanorods and Sm3RuO7/MnO2 nanocomposite. J Mater Sci: Mater Electron 35, 510 (2024). https://doi.org/10.1007/s10854-024-12191-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12191-6

Navigation