Skip to main content
Log in

Structural, cation distribution, Raman spectroscopy, and magnetic features of Co-doped Cu–Eu nanocrystalline spinel ferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocrystalline spinel ferrites with the general chemical formula Cu1−xCoxEu0.1Fe1.9O4 with x = 0, 0.25, 0.50, 0.75, and 1.0 were synthesized using the flash auto-combustion technique. X-ray diffraction, Scanning electron microscopy and Raman spectroscopy techniques were used to analyses the structural properties of samples of produced spinel ferrite. The magnetic characteristics of the obtained spinel ferrite samples have been examined using the vibration sample magnetometers measurements. According to X-ray diffraction analysis, the main cubic phase with space group Fd3m ocuured in all of the prepared samples and the lattice parameter of the cubic phase increases with increase in the amount of Co content. The cation distributions in Cu1−xCoxEu0.1Fe1.9O4 spinel ferrite were identified using the X-ray diffraction data. The majority of the particles were found to be agglomerated and spherical by scanning electron microscopy. The emission peaks of its separate component elements can be observed in the spectra obtained using energy-dispersive X-ray spectroscopy. Raman spectroscopy revealed that the samples with higher Co content displayed sharp and strong Raman bands for tetrahedral sites and octahedral sites. According to VSM measurements, the saturation magnetization (Ms) and magnetic moment (μB) were improved as the Co concentration increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M.A. Soler et al., Aging investigation of cobalt ferrite nanoparticles in low pH magnetic fluid. Langmuir 23(19), 9611–9617 (2007)

    Article  CAS  PubMed  Google Scholar 

  2. E. Manova et al., Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4. Chem. Mater. 16(26), 5689–5696 (2004)

    Article  CAS  Google Scholar 

  3. K. Sakthipandi et al., Investigation of magnetic phase transitions in Ni0.5Cu0.25Zn0.25Fe2-xLaxO4 nanoferrites using magnetic and in-situ ultrasonic measurements. Phys. B Cond. Matter. 645(15), 414280 (2022)

    Article  CAS  Google Scholar 

  4. S. Ayyappan, J. Philip, B. Raj, Effect of digestion time on size and magnetic properties of spinel CoFe2O4 nanoparticles. J. Phys. Chem. C 113(2), 590–596 (2009)

    Article  CAS  Google Scholar 

  5. A. Hossain et al., Optical, magnetic and magneto-transport properties of Nd1-xAxMn0.5Fe0.5O3-δ (A=Ca, Sr, Ba; x=0, 0.25). J. Alloys Comp. 847(20), 156297 (2020)

    Article  CAS  Google Scholar 

  6. R.R. Kanna et al., Neodymium doped on the manganese-copper nanoferrites: analysis of structural, optical, dielectric and magnetic properties. J. Mater. Sci.: Mater. Electron. 30, 4473–4486 (2019)

    ADS  CAS  Google Scholar 

  7. D.S. Nikam et al., Cation distribution, structural, morphological and magnetic properties of Co1–xZnxFe2O4 (x= 0–1) nanoparticles. RSC Adv. 5(3), 2338–2345 (2015)

    Article  ADS  CAS  Google Scholar 

  8. K. Patil et al., Structural, electrical and magnetic properties of (Cu/Co) Fe2O4 spinel ferrite materials. Appl. Phys. A 128(11), 988 (2022)

    Article  ADS  CAS  Google Scholar 

  9. A.G. Abraham et al., Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocomposites. J. Magn. Magn. Mater. 452, 380–388 (2018)

    Article  ADS  CAS  Google Scholar 

  10. A. Manikandan, J.J. Vijaya, L.J. Kennedy, Comparative investigation of NiO nano-and microstructures for structural, optical and magnetic properties. Physica E 49, 117–123 (2013)

    Article  ADS  CAS  Google Scholar 

  11. G. Mathubala et al., Enhanced photocatalytic activity of spinel CuxMn1–xFe2O4 nanocatalysts for the degradation of methylene blue dye and opto-magnetic properties. Nanosci. Nanotechnol. Lett. 8(5), 375–381 (2016)

    Article  Google Scholar 

  12. D. Maruthamani et al., Fine cutting edge shaped Bi2O3rods/reduced graphene oxide (RGO) composite for supercapacitor and visible-light photocatalytic applications. J. Colloid Interface Sci. 498, 449–459 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. S. Asiri et al., Hydrothermal synthesis of CoyZnyMn1-2yFe2O4 nanoferrites: magneto-optical investigation. Ceram. Int. 44(5), 5751–5759 (2018)

    Article  CAS  Google Scholar 

  14. K. Haneda, A. Morrish, Noncollinear magnetic structure of CoFe2O4 small particles. J. Appl. Phys. 63(8), 4258–4260 (1988)

    Article  ADS  CAS  Google Scholar 

  15. N. Moumen, P. Veillet, M. Pileni, Controlled preparation of nanosize cobalt ferrite magnetic particles. J. Magn. Magn. Mater. 149(1–2), 67–71 (1995)

    Article  ADS  CAS  Google Scholar 

  16. V. Blaskov et al., Magnetic properties of nanophase CoFe2O4 particles. J. Magn. Magn. Mater. 162(2–3), 331–337 (1996)

    Article  ADS  CAS  Google Scholar 

  17. S.A. Faghidian, Flexure mechanics of nonlocal modified gradient nano-beams. J. Comput. Design Eng. 8(3), 949–959 (2021)

    Article  MathSciNet  Google Scholar 

  18. R. Waldron, Infrared spectra of ferrites. Phys. Rev. 99(6), 1727 (1955)

    Article  ADS  CAS  Google Scholar 

  19. K. Davies et al., The observation of multi-axial anisotropy in ultrafine cobalt ferrite particles used in magnetic fluids. J. Magn. Magn. Mater. 149(1–2), 14–18 (1995)

    Article  ADS  CAS  Google Scholar 

  20. V. Pillai, D. Shah, Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater. 163(1–2), 243–248 (1996)

    Article  ADS  CAS  Google Scholar 

  21. P. Sinuhaji et al., Influences of Co compositions in CoFe2O4 on microstructures, thermal, and magnetic properties. Case Studies in Thermal Engineering 26, 101040 (2021)

    Article  Google Scholar 

  22. P.A. Vinosha et al., Review on recent advances of synthesis, magnetic properties, and water treatment applications of cobalt ferrite nanoparticles and nanocomposites. J. Supercond. Novel Magn. 34, 995–1018 (2021)

    Article  CAS  Google Scholar 

  23. S.A. Faghidian, K.K. Żur, J.N. Reddy, A mixed variational framework for higher-order unified gradient elasticity. Int. J. Eng. Sci. 170, 103603 (2022)

    Article  MathSciNet  Google Scholar 

  24. S.A. Faghidian, Contribution of nonlocal integral elasticity to modified strain gradient theory. Eur. Phys. J. Plus 136(5), 559 (2021)

    Article  Google Scholar 

  25. M. Darvish et al., Biosynthesis of Zn-doped CuFe2O4 nanoparticles and their cytotoxic activity. Sci. Rep. (2022). https://doi.org/10.1038/s41598-022-13692-2

    Article  PubMed  PubMed Central  Google Scholar 

  26. K. Sangsuriyonk et al., Synthesis and characterization of CoxFe1−xFe2O4 nanoparticles by anionic, cationic, and non-ionic surfactant templates via co-precipitation. Sci. Rep. 12(1), 4611 (2022)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. M.A. Gabal, Y. Al Angari, Effect of diamagnetic substitution on the structural, magnetic and electrical properties of NiFe2O4. Mater. Chem. Phys. 115(2–3), 578–584 (2009)

    Article  CAS  Google Scholar 

  28. X. Tan et al., The effect of Cu content on the structure of Ni1−xCuxFe2O4 spinels. Mater. Res. Bull. 44(12), 2160–2168 (2009)

    Article  CAS  Google Scholar 

  29. T. Marinca, I. Chicinaş, O. Isnard, Synthesis, structural and magnetic characterization of nanocrystalline CuFe2O4 as obtained by a combined method reactive milling, heat treatment and ball milling. Ceram. Int. 38(3), 1951–1957 (2012)

    Article  CAS  Google Scholar 

  30. A. Rais et al., Copper substitution effect on the structural properties of nickel ferrites. Ceram. Int. 40(9), 14413–14419 (2014)

    Article  CAS  Google Scholar 

  31. N. Sanpo et al., Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomater. 9(3), 5830–5837 (2013)

    Article  CAS  PubMed  Google Scholar 

  32. M. Hashim et al., Structural, electrical and magnetic properties of Co–Cu ferrite nanoparticles. J. Alloy. Compd. 518, 11–18 (2012)

    Article  CAS  Google Scholar 

  33. S. Jesus Mercy et al., Microstructural, thermal, electrical and magnetic analysis of Mg2+ substituted cobalt ferrite. Appl. Phys. A 126, 1–13 (2020)

    Article  Google Scholar 

  34. K. Sinkó et al., Liquid-phase syntheses of cobalt ferrite nanoparticles. J. Nanopart. Res. 14, 1–14 (2012)

    Article  Google Scholar 

  35. D.D. Andhare et al., Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via Co-precipitation method. Phys. B: Cond. Matter 583, 412051 (2020)

    Article  CAS  Google Scholar 

  36. C. Lee, H. Chang, H.D. Jang, Preparation of CoFe2O4-graphene composites using aerosol spray pyrolysis for supercapacitors application. Aerosol Air Qual. Res. 19(3), 443–448 (2019)

    Article  CAS  Google Scholar 

  37. P.D. Thang, G. Rijnders, D.H. Blank, Spinel cobalt ferrite by complexometric synthesis. J. Magn. Magn. Mater. 295(3), 251–256 (2005)

    Article  ADS  CAS  Google Scholar 

  38. M.M. Naik et al., Multifunctional properties of microwave-assisted bioengineered nickel doped cobalt ferrite nanoparticles. J. Sol-Gel. Sci. Technol. 91, 578–595 (2019)

    Article  CAS  Google Scholar 

  39. P. Monisha et al., Influence of Mn dopant on the crystallite size, optical and magnetic behaviour of CoFe2O4 magnetic nanoparticles. J. Phys. Chem. Solids 148, 109654 (2021)

    Article  CAS  Google Scholar 

  40. L. Yao et al., Synthesis of cobalt ferrite with enhanced magnetostriction properties by the sol–gel–hydrothermal route using spent Li-ion battery. J. Alloy. Compd. 680, 73–79 (2016)

    Article  CAS  Google Scholar 

  41. S. Fayazzadeh et al., Magnetic properties and magnetic hyperthermia of cobalt ferrite nanoparticles synthesized by hydrothermal method. J. Supercond. Novel Magn. 33, 2227–2233 (2020)

    Article  CAS  Google Scholar 

  42. R. Massart et al., Preparation and properties of monodisperse magnetic fluids. J. Magn. Magn. Mater. 149(1–2), 1–5 (1995)

    Article  ADS  CAS  Google Scholar 

  43. A. Abouhaswa et al., Investigation of crystal structure, electrical and magnetic properties of Spinel Mn–Cd ferrite nanoparticles. J. Inorg. Organomet. Polym. Mater. (2022). https://doi.org/10.1007/s10904-021-02116-9

    Article  Google Scholar 

  44. S. Saleem et al., Investigating the impact of Cu2+ doping on the morphological, structural, optical, and electrical properties of CoFe2O4 nanoparticles for use in electrical devices. Materials 15(10), 3502 (2022)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. J.R. Dasari, Comparison of the effect of Cr3+ substituted Co–Cu and Cu-Co nano ferrites on structural, Dc electrical resistivity and magnetic properties. Dc Elect. Resist. Magn. Prop. (2023). https://doi.org/10.2139/ssrn.44854196

    Article  Google Scholar 

  46. S.H. Trier, M.S. Abdali, The structural, magnetic, and optical properties of Cu1-xCoxFe2O4 spinel ferrite and its applications. Al-Qadisiyah J. Pure Sci. 25(3), 1–15 (2020)

    Article  Google Scholar 

  47. R.R. Kanna et al., Doping effect of rare-earth (lanthanum, neodymium and gadolinium) ions on structural, optical, dielectric and magnetic properties of copper nanoferrites. J. Rare Earths 36(12), 1299–1309 (2018)

    Article  Google Scholar 

  48. A. Abouhaswa et al., Investigation of crystal structure, electrical and magnetic properties of spinel Mn-Cd ferrite nanoparticles. J. Inorg. Organomet. Polym. Mater. (2022). https://doi.org/10.1007/s10904-021-02116-9

    Article  Google Scholar 

  49. A. Balagurov et al., Structural phase transition in CuFe2O4 spinel. Crystallogr. Rep. 58, 710–717 (2013)

    Article  ADS  CAS  Google Scholar 

  50. M. Manikandan, N. Sundaramurthy, S.J.S.O. Rajalakshmi, Structure magnetic and dielectric properties of Mg-Co-Cu nano ferrite powder synthesized by sol-gel auto combustion method. Semicond. Optoelect. 42(1), 58–74 (2023)

    Google Scholar 

  51. E. O’Quinn et al., Inversion in Mg1-xNixAl2O4 spinel: new insight into local structure. J. Am. Chem. Soc. (2017). https://doi.org/10.1021/jacs.7b04370

    Article  PubMed  Google Scholar 

  52. T.R. Tatarchuk et al., Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites. J. Alloy. Compd. 694, 777–791 (2017)

    Article  CAS  Google Scholar 

  53. T. Tatarchuk et al., Spinel ferrite nanoparticles: synthesis, crystal structure, properties, and perspective applications (Springer, Cham, 2017), pp.305–325

    Google Scholar 

  54. K. Khalaf et al., Infrared and structural studies of Mg1–xZnxFe2O4 ferrites. Phys B 407, 795–804 (2013)

    Google Scholar 

  55. D.R. Mane et al., Structural and magnetic characterizations of Mn–Ni–Zn ferrite nanoparticles. Phys. Status Solidi 207(10), 2355–2363 (2010)

    Article  ADS  CAS  Google Scholar 

  56. S.N. Kane, M. Satalkar, Correlation between magnetic properties and cationic distribution of Zn0.85−xNixMg0.05Cu0.1Fe2O4 nano spinel ferrite: effect of Ni doping. J. Mater. Sci. 52(6), 3467–3477 (2017)

    Article  ADS  CAS  Google Scholar 

  57. K.E. Sickafus, J.M. Wills, N.W. Grimes, Structure of spinel. J. Am. Ceram. Soc. 82(12), 3279–3292 (1999)

    Article  CAS  Google Scholar 

  58. S.I. Ahmad, S.A. Ansari, D. Ravi Kumar, Structural, morphological, magnetic properties and cation distribution of Ce and Sm co-substituted nano crystalline cobalt ferrite. Mater. Chem. Phys. 208, 248–257 (2018)

    Article  CAS  Google Scholar 

  59. M.A. Amer et al., Spectral studies of Co substituted Ni–Zn ferrites. J. Magn. Magn. Mater. 323(11), 1445–1452 (2011)

    Article  ADS  CAS  Google Scholar 

  60. I. Ahmad et al., Study of cation distribution for Cu–Co nanoferrites synthesized by the sol–gel method. Ceram. Int. 39(6), 6735–6741 (2013)

    Article  CAS  Google Scholar 

  61. R. Kadam et al., A thorough investigation of rare-Earth Dy3+ substituted cobalt-chromium ferrite and its magnetoelectric nanocomposite. Nanomaterials 13, 1165 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. S. Kane, M. Satalkar, Correlation between magnetic properties and cationic distribution of Zn0.85−xNixMg0.05Cu0.1Fe2O4 nano spinel ferrite: effect of Ni doping. J. Mater. Sci. 52, 3467–3477 (2017)

    Article  ADS  CAS  Google Scholar 

  63. S. Shaat, H. Dawoud, Influence of variation of structural parameters on magnetic properties of Al-substituted Ni spinel ferrite. J. Mater. Sci.: Mater. Electron. 32(9), 11536–11546 (2021)

    CAS  Google Scholar 

  64. P. Chandramohan et al., Cation distribution and particle size effect on Raman spectrum of CoFe2O4. J. Solid State Chem. 184(1), 89–96 (2011)

    Article  ADS  CAS  Google Scholar 

  65. R. Kambale et al., The effect of Mn substitution on the magnetic and dielectric properties of cobalt ferrite synthesized by an autocombustion route. Smart Mater. Struct. 18(11), 115028 (2009)

    Article  ADS  Google Scholar 

  66. L. Phor, S. Chahal, V. Kumar, Zn2+ substituted superparamagnetic MgFe2O4 spinel-ferrites: investigations on structural and spin-interactions. J. Adv. Ceram. 9, 576–587 (2020)

    Article  CAS  Google Scholar 

  67. S.C. Suman et al., Zn doped α-Fe2O3: an efficient material for UV driven photocatalysis and electrical conductivity. Crystals 10(4), 273 (2020)

    Article  MathSciNet  CAS  Google Scholar 

  68. O. Hemeda, M. Barakat, Effect of hopping rate and jump length of hopping electrons on the conductivity and dielectric properties of Co–Cd ferrite. J. Magn. Magn. Mater. 223(2), 127–132 (2001)

    Article  ADS  CAS  Google Scholar 

  69. A. Goldman, Ferrite transformers and inductors at high power. Modern Ferrite Technol. (2006). https://doi.org/10.1007/978-0-387-29413-1_13

    Article  Google Scholar 

  70. R. Tiwari et al., Structural and magnetic properties of tailored NiFe2O4 nanostructures synthesized using auto-combustion method. Results Phys. 16, 102916 (2020)

    Article  Google Scholar 

  71. D. Varshney, K. Verma, A. Kumar, Substitutional effect on structural and magnetic properties of AxCo1−xFe2O4 (A= Zn, Mg and x= 0.0, 0.5) ferrites. J. Mol. Struct. 1006(1–3), 447–452 (2011)

    Article  ADS  CAS  Google Scholar 

  72. P. Pulišová et al., Structure and magnetic properties of Co and Ni nano-ferrites prepared by a two step direct microemulsions synthesis. J. Magn. Magn. Mater. 341, 93–99 (2013)

    Article  ADS  Google Scholar 

  73. Ü. Özgür, Y. Alivov, H. Morkoç, Microwave ferrites, part 1: fundamental properties. J. Mater. Sci.: Mater. Electron. 20, 789–834 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RSD, AAE-H and ASA performed all the experimental work (sample preparation and its characterization) and prepared manuscript. MHN and LMSE-D helped significantly in the explanation of experimental results.

Corresponding authors

Correspondence to R. S. Diab or A. S. Abouhaswa.

Ethics declarations

Conflict of interest

There is no conflict of interest among the contributing authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diab, R.S., El-Deen, L.M.S., Nasr, M.H. et al. Structural, cation distribution, Raman spectroscopy, and magnetic features of Co-doped Cu–Eu nanocrystalline spinel ferrites. J Mater Sci: Mater Electron 35, 290 (2024). https://doi.org/10.1007/s10854-024-12047-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12047-z

Navigation