Skip to main content
Log in

Study on growth, mechanical, optical, and topological properties of sodium p-nitrophenolate p-nitrophenol dihydrate single crystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sodium p-nitrophenolate p-nitrophenol dihydrate (SPPD) semi-organic single crystal was grown by adopting slow-evaporation solution growth technique (SEST) at 35 °C. Powder X-ray diffraction was used to analyze its lattice parameters, phase and crystal system, and it turned out that the grown crystal crystallizes in monoclinic non-centrosymmetric space group C2. UV–Vis spectrum was used to examine its optical properties and it was found that in the visible region, it exhibits high transmittance with a wide band gap of 2.29 eV. Mechanical and thermal stability was confirmed by the Vickers microhardness and TG-DTA, respectively. The non-covalent interactions have been investigated by graphing the data using reduced density gradient (RDG) and Multiwfn. Quantum theory of atoms in molecules (QTAIM) through topological research has been used to estimate the inter and intramolecular charge transfer of sodium p-nitrophenolate p-nitrophenol dihydrate (SPPD). The non-covalent interactions have been investigated by graphing the data using (RDG) and Multiwfn. Quantum theory of atoms in molecules through topological research has been used to estimate the inter and intramolecular charge transfer of (SPPD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. B.M. Boaz, M. Palanichamy, B. Varghese, C.J. Raj, S.J. Das, Synthesis, growth, structural, optical, photoconductivity and dielectric studies on potassium p-nitrophenolate dihydrate: a new semiorganic nonlinear optical material. Mater. Res. Bull. 43, 3587–3595 (2008). https://doi.org/10.1016/j.materresbull.2008.01.010

    Article  CAS  Google Scholar 

  2. T. Vijayakumar, I.H. Joe, C.P.R. Nair, V.S. Jayakumar, Vibrational spectral studies on charge transfer and ionic hydrogen-bonding interactions of nonlinear optical material L-arginine nitrate hemihydrate. J. Raman Spectrosc. 40, 18–30 (2008). https://doi.org/10.1002/jrs.2062

    Article  ADS  CAS  Google Scholar 

  3. H.Y. Yoshikawa, Y. Hosokawa, H. Masuhara, Spatial control of urea crystal growth by focused femtosecond laser irradiation. Cryst. Growth Des. 6, 302–305 (2005). https://doi.org/10.1021/cg050190v

    Article  CAS  Google Scholar 

  4. H.A. Khayoon, M. Ismael, A. Al-nayili, H.A. Alshamsi, Fabrication of LaFeO3-nitrogen deficient g-C3N4 composite for enhanced the photocatalytic degradation of RhB under sunlight irradiation. Inorg. Chem. Commun. 157111356 (2023). https://doi.org/10.1016/j.inoche.2023.111356

    Article  CAS  Google Scholar 

  5. M.A.A.H. Allah, H.A. Alshamsi, Green synthesis of ZnO NPs using Pontederia crassipes leaf extract: characterization, their adsorption behavior and anti-cancer property. Biomass Convers. Biorefin. (2022). https://doi.org/10.1007/s13399-022-03091-y

    Article  Google Scholar 

  6. E. Rahimzade, M. Ghanbari, H.A. Alshamsi, M. Karami, M. Baladi, M. Salavati-Niasari, Simple preparation of chitosan-coated thallium lead iodide nanostructures as a new visible-light photocatalyst in decolorization of organic contamination. J. Mol. Liq. 341117299 (2021). https://doi.org/10.1016/j.molliq.2021.117299

    Article  CAS  Google Scholar 

  7. M.A.A.H. Allah, H.A. Alshamsi, Facile green synthesis of ZnO/AC nanocomposites using Pontederia crassipes leaf extract and their photocatalytic properties based on visible light activation. J. Mater. Sci. Mater. Electron. 34, 1263 (2023). https://doi.org/10.1007/s10854-023-10636-y

    Article  CAS  Google Scholar 

  8. N.S. Salman, H.A. Alshamsi, Synthesis of sulfonated polystyrene based porous activated carbon for organic dyes removal from aqueous solutions. J. Polym. Environ. 30, 5100–5118 (2022). https://doi.org/10.1007/s10924-022-02584-1

    Article  CAS  Google Scholar 

  9. S.M. Tabatabaeinejad, Q.A. Yousif, H.A. Alshamsi, A. Al-Nayili, M. Salavati-Niasari, Ultrasound-assisted fabrication and characterization of a novel UV-light-responsive Er2Cu2O5 semiconductor nanoparticle photocatalyst. Arab. J. Chem. 15, 103826 (2022). https://doi.org/10.1016/j.arabjc.2022.103826

    Article  CAS  Google Scholar 

  10. H. Teymourinia, A. Al-nayili, H.A. Alshamsi, R. Mohammadi, E. Sohouli, M. Gholami, Development of CNOs/PANI-NTs/AuNPs nanocomposite as an electrochemical sensor and Z-scheme photocatalyst for determination and degradation of ciprofloxacin. Surf. Interfaces. 42103412 (2023). https://doi.org/10.1016/j.surfin.2023.103412

    Article  CAS  Google Scholar 

  11. M.A.A.H. Allah, H.A. lshamsi, Green synthesis of AC/ZnO nanocomposites for adsorptive removal of organic dyes from aqueous solution. Inorg. Chem. Commun. 157, 111415 (2023). https://doi.org/10.1016/j.inoche.2023.111415

    Article  CAS  Google Scholar 

  12. G.A. Gbair, H.A. Alshamsi, Facile green synthesis of CuO–ZnO nanocomposites from Argyreia nervosa leaves extract for photocatalytic degradation of rhodamine B dye. Biomass Convers. Biorefin. (2022). https://doi.org/10.1007/s13399-022-03408-x

    Article  Google Scholar 

  13. A.A. Kadhem, H.A. Alshamsi, Biosynthesis of Ag-ZnO/rGO nanocomposites mediated Ceratophyllum demersum L. leaf extract for photocatalytic degradation of rhodamine B under visible light. Biomass Convers. Biorefin. 26, 1–15 (2023). https://doi.org/10.1007/s13399-023-04501-5

    Article  CAS  Google Scholar 

  14. B. Uma, K.S. Rajnikant, Murugesan, S. Krishnan, B.M. Boaz, Growth, structural, optical, thermal and dielectric properties of a novel semi-organic nonlinear optical crystal: dichloro-diglycine zinc II. Prog Nat. Sci. 24, 378–387 (2014). https://doi.org/10.1016/j.pnsc.2014.07.001

    Article  CAS  Google Scholar 

  15. B.M. Boaz, A.L. Rajesh, A.X.J. Raja, A.J. Das, Growth and characterization of a new nonlinear optical semiorganic lithium paranitrophenolate trihydrate (NO2–C6H4–OLi·3H2O) single crystal. J. Cryst. Growth. 262, 531–535 (2004). https://doi.org/10.1016/j.jcrysgro.2003.10.041

    Article  ADS  CAS  Google Scholar 

  16. K. Ramachandran, A. Raja, V. Mohankumar, M.S. Pandian, P. Ramasamy, Experimental and theoretical approach of organic 4,4′-dimethylbenzophenone (DMBP) single crystal for NLO application. Opt. Laser Technol. 119105640 (2019). https://doi.org/10.1016/j.optlastec.2019.105640

    Article  CAS  Google Scholar 

  17. S. Nandhini, K. Sudhakar, S. Muniyappan, P. Murugakoothan, Systematic discussions on structural, optical, mechanical, electrical and its application to NLO devices of a novel semi-organic single crystal: guanidinium tetrafluoroborate (GFB). Opt. Laser Technol. 105, 249–256 (2018). https://doi.org/10.1016/j.optlastec.2018.03.006

    Article  ADS  CAS  Google Scholar 

  18. S. Selvakumar, M.S. Boobalan, S.A. Babu, S. Ramalingam, A.L. Rajesh, Crystal growth and DFT insight on sodium para-nitrophenolate para-nitrophenol dihydrate single crystal for NLO applications. J. Mol. Struct. 1125, 1–11 (2016). https://doi.org/10.1016/j.molstruc.2016.05.104

    Article  ADS  CAS  Google Scholar 

  19. K. Vijayakumar, P. Palani, M. Thiyagarajan, S. Kotteswaran, S. Vetrivel, H. Saleem, G. Vinitha, P. Purushothaman, Enhancing the optical properties of sodium 4-nitrophenolate dehydrate single crystals: role of second and third harmonic generation efficiencies. J. Mater. Sci. Mater. Electron. 341473 (2023). https://doi.org/10.1007/s10854-023-10876-y

    Article  CAS  Google Scholar 

  20. S. Brahadeeswaran, V. Venkataramanan, H.L. Bhat, Nonlinear optical activity of anhydrous and hydrated sodium p-nitrophenolate. J. Cryst. Growth. 205, 548–553 (1999). https://doi.org/10.1016/S0022-0248(99)00302-4

    Article  ADS  CAS  Google Scholar 

  21. S. Selvakumar, A.L. Rajesh, Synthesis and characterization of semi-organic nonlinear optical material: Sodium para-nitrophenolate para-nitrophenol dihydrate. Optik. 127, 6982–6990 (2016). https://doi.org/10.1016/j.ijleo.2016.05.015

    Article  ADS  CAS  Google Scholar 

  22. G.W. Frish, Gaussian, 09, Revision A.I, Gaussian, Inc., (2009)

  23. A.T. Maynard, M. Huang, W.G. Rice, D.G. Covell, Reactivity of the HIV-1 nucleocapsid protein p7 zinc finger domains from the perspective of density-functional theory. Proc. Natl. Acad. Sci. 95, 11578–11583 (1998). https://doi.org/10.1073/pnas.95.20.11578

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. B. Silvi, A. Savin, Classification of chemical bonds based on topological analysis of electron localization functions. Nature. 371683–686 (1994). https://doi.org/10.1038/371683a0

    Article  ADS  CAS  Google Scholar 

  25. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71 (1969). https://doi.org/10.1107/S0021889869006558

    Article  ADS  CAS  Google Scholar 

  26. J.R. Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B: Condens. 192, 55–69 (1993). https://doi.org/10.1016/0921-4526(93)90108-I

    Article  ADS  Google Scholar 

  27. J. Dala, N. Sinha, H. Yadav, B. Kumar, Structural, electrical, ferroelectric and mechanical properties with Hirshfeld surface analysis of novel NLO semiorganic sodium p-nitrophenolate dihydrate piezoelectric single crystal. RSC Adv. 557735–57748 (2015). https://doi.org/10.1039/C5RA10501C

    Article  ADS  CAS  Google Scholar 

  28. S.K. Arora, A. Kothari, B. Amin, B. Chudasama, Synthesis and characterization of cadmium tartrate single crystals. Cryst. Res. Technol. 42, 589–594 (2007). https://doi.org/10.1002/crat.200610868

    Article  CAS  Google Scholar 

  29. D. Nayak, N. Vijayan, M. Kumari, M. Vij, B. Sridhar, G. Gupta, R.P. Pant, Bulk growth of iminodiacetic acid single crystal and its characterization for nonlinear optical applications. Bull. Mater. Sci. 44, 1–9 (2021). https://doi.org/10.1007/s12034-020-02338-6

    Article  CAS  Google Scholar 

  30. N. Sonia, Vijayan, M. Vij, A. Krishna, H. Yadav, K.K. Maurya, S.A.M.B. Dhas, P. Kumar, An efficient piezoelectric single-crystal L-argininium phosphite: structural, Hirshfeld, electrical and mechanical analyses for NLO applications. Appl. Phys. A 1251–14 (2019). https://doi.org/10.1007/s00339-019-2642-5

    Article  CAS  Google Scholar 

  31. B. Riscob, M. Shkir, V. Ganesh, N. Vijayan, K.K. Maurya, K.K. Rao, G. Bhagavannarayana, Synthesis, crystal growth and mechanical properties of bismuth silicon oxide (BSO) single crystal. J. Alloys Compd. 588, 242–247 (2014). https://doi.org/10.1016/j.jallcom.2013.11.038

    Article  CAS  Google Scholar 

  32. K. Sangwal, On the reverse indentation size effect and microhardness measurement of solids. Mater. Chem. Phys. 63, 145–152 (2000). https://doi.org/10.1016/S0254-0584(99)00216-3

    Article  CAS  Google Scholar 

  33. K. Gayathri, P. Krishnan, P.R. Rajkumar, G. Anbalagan, Growth, optical, thermal and mechanical characterization of an organic crystal: brucinium 5-sulfosalicylate trihydrate. Bull. Mater. Sci. 37, 1589–1595 (2014). https://doi.org/10.1007/s12034-014-0721-y

    Article  CAS  Google Scholar 

  34. B.K. Periyasamy, R.S. Jebas, N. Gopalakrishnan, T. Balasubramanian, (2007) Development of NLO tunable band gap organic devices for optoelectronic applications. Mater. Lett. (61): 4246–4249 https://doi.org/10.1016/j.matlet.2007.01.105

    Article  CAS  Google Scholar 

  35. M. Mylarappa, S. Chandruvasan, B. Thippeswamy, K.N.S. Kumara, S. Kantharaju, Clay incorporated ruthenium oxide nanocomposite for electrochemical, sensor, optical, photocatalytic and antioxidant studies. Sustain. Chem. Environ. 2, 100007 (2023). https://doi.org/10.1016/j.scenv.2023.100007

    Article  Google Scholar 

  36. D. Shanthi, P. Selvarajan, S. Perumal, (2016) Growth, linear optical constants and photoluminescence characteristics of beta-alaninium picrate (BAP) crystals. Optik (127): 3192–3199 https://doi.org/10.1016/j.ijleo.2015.11.189

    Article  ADS  CAS  Google Scholar 

  37. J. Dalal, B. Kumar, Bulk crystal growth, optical, mechanical and ferroelectric properties of new semiorganic nonlinear optical and piezoelectric lithium nitrate monohydrate oxalate single crystal. Opt. Mater. 51, 139–147 (2016). https://doi.org/10.1016/j.optmat.2015.11.033

    Article  ADS  CAS  Google Scholar 

  38. S. Prince, T. Suthan, S. Goma, C. Gnanasambandam, N.P. Rajesh, Growth and characterization of organic 4-methoxy-2- nitroaniline single crystals for optical applications. J. Mater. Sci. Mater. Electron. 34165 (2023). https://doi.org/10.1007/s10854-022-09481-2

    Article  CAS  Google Scholar 

  39. K. Vaiyapuri, T. Subramani, A.K. Rajamani, M.L. Thangavel, S.K. Ganesan, S. Palanisamy, K. Malaivelusamy, Organometallic L-alanine cadmium iodide crystals for optical device fabrication. J. Electron. Sci. Technol. 20100178 (2022). https://doi.org/10.1016/j.jnlest.2022.100178

    Article  Google Scholar 

  40. G. Ahila, M.D. Bharathi, J. Mohana, G. Vinitha, G. Anbakagan, Growth, optical, mechanical and nonlinear optical properties of Furfurylaminium 2-chloro-5-nitrobenzoate single crystal. Mater. Res. Express. 6045102 (2019). https://doi.org/10.1088/2053-1591/aafb8b

    Article  ADS  CAS  Google Scholar 

  41. P. Rekha, G. Chakkaravarthi, R.M. Kumar, G. Vinitha, R. Kanagadurai, Growth, structural and optical limiting property of a new third order nonlinear optical material: piperazinium bis (2carboxypyridine) monohydrate. Mater. Sci. Mater. Electron. 309471–9488 (2019). https://doi.org/10.1007/s10854-019-01279-z

    Article  CAS  Google Scholar 

  42. V. Sangeetha, K. Gayathri, P. Krishnan, N. Sivakumar, N. Kanagathara, G. Anbalagan, Growth, optical, thermal, dielectric and microhardness characterizations of melaminium bis (trifluoroacetate) trihydrate single crystal. J. Cryst. Growth. 389, 30–38 (2014). https://doi.org/10.1016/j.jcrysgro.2013.11.026

    Article  ADS  CAS  Google Scholar 

  43. S. Prince, T. Suthan, C. Gnanasambandam, Growth and characterization of organic 2,4–dinitroaniline single crystals for optical applications. J. Electron. Mater. 51, 1639–1652 (2022). https://doi.org/10.1007/s11664-022-09428-7

    Article  ADS  CAS  Google Scholar 

  44. J.F. Yang, C.Y. Yin, D. Wang, C.Y. Jia, G.F. Hao, G.F. Yang, Molecular determinants elucidate the selectivity in abscisic acid receptor and HAB1 protein interactions. Front. Chem. 8, 1–13 (2020). https://doi.org/10.3389/fchem.2020.00425

    Article  CAS  Google Scholar 

  45. A.D. Becke, Density-functional thermo chemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993). https://doi.org/10.1063/1.464913

    Article  ADS  CAS  Google Scholar 

  46. O. Noureddine, N. Issaoui, M. Medimagh, O. Al-Dossary, H. Marouani, Quantum chemical studies on molecular structure, AIM, ELF, RDG and antiviral activities of hybrid hydroxychloroquine in the treatment of COVID-19: molecular docking and DFT calculations. J. King Saud Univ. Sci. 33, 10123–101334 (2021). https://doi.org/10.1016/j.jksus.2020.101334

    Article  Google Scholar 

  47. H. Jacobsen, Localized-orbital locator (LOL) profiles of chemical bonding. Can. J. Chem. 86695–702 (2008). https://doi.org/10.1139/v08-052

    Article  CAS  Google Scholar 

  48. M. Randic, Aromaticity and conjugation. J. Am. Chem. Soc. 99444–450 (1977). https://doi.org/10.1021/ja00444a022

    Article  CAS  Google Scholar 

  49. F.B. Rizwana, S. Muthu, C.S. PrasanaJC, Abraham, M. Raja, Spectroscopic (FT-IR, FT-Raman) investigation, topology (ESP, ELF, LOL) analyses, charge transfer excitation and molecular docking (dengue, HCV) studies on Ribavirin. Chem. Data Collections. 17236–250 (2018). https://doi.org/10.1016/j.cdc.2018.09.003

    Article  Google Scholar 

  50. R.H.M. Thirumalaikumar, S. Muthu, F.B. Asif, A. Irfan, Structural, spectral elucidation, wavefunctional properties, natural bond orbitals, and molecular docking analysis of synthesized 1-phenyl-3(4-methoxyphenyl)-2-propenone: protease kinase inhibitor. Spectrosc. Lett. 54773–789 (2021). https://doi.org/10.1080/00387010.2021.2005629

    Article  CAS  Google Scholar 

  51. V.N. Kiran, D. Nayak, M. Kumari, K. Vinod, Kumar, P. Vashishtha, V. Thirughanasambantham, Balachandran, B. Sridhar, G. Gupta, A comprehensive assessment on synthesis, growth, theoretical & optical properties of glycine zinc sulphate pentahydrate single crystal for third-order nonlinear optical applications. J. Mater. Sci. Mater. Electron. 341132 (2023). https://doi.org/10.1007/s10854-023-10496-6

    Article  CAS  Google Scholar 

  52. M. Muthuraman, M. Bagieu-Beucher, R. Masse, J.F. Nicoud, G.R. Desiraju, Sodium 4-nitrophenolate 4-nitrophenol dihydrate crystal: a new herringbone structure for quadratic nonlinear optics. J. Mater. Chem. 9, 1471–1479 (1999). https://doi.org/10.1039/A900613C

    Article  CAS  Google Scholar 

Download references

Funding

The authors are thankful to Director CSIR-NPL for encouragement to make this present work possible. One of the author Jyoti is thankful to UGC, India for providing financial support and AcSIR-NPL and CSIR-NPL for PhD registration.

Author information

Authors and Affiliations

Authors

Contributions

J : investigation, methodology, writing—original draft, writing—review & editing. NV : conceptualization, supervision. K : investigation, writing—review and editing, formal analysis, methodology. DJ : writing—review and editing. MK : writing—review & editing, formal analysis. PS : writing—review and editing. VB : writing—review & editing, formal analysis.

Corresponding author

Correspondence to N. Vijayan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jyoti, Vijayan, N., Kiran et al. Study on growth, mechanical, optical, and topological properties of sodium p-nitrophenolate p-nitrophenol dihydrate single crystal. J Mater Sci: Mater Electron 35, 283 (2024). https://doi.org/10.1007/s10854-024-12041-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12041-5

Navigation